البطريركية اللاتينية مدرسة راهبات مار يوسف الثانوية.

الزمن: ساعتان ونصف. المبحث: رياضيات. الصف: الثاني الثانوي العلمي. التاريخ: ١ /٤/ ٢٠١٩ مجموع العلامات ١٠٠

المعلم: إبراهيم أبو عبية.

القصل الأول

تتكون ورقة الأسئلة من ٦ أسئلة وعلى الطالب أن يجيب عن ٥ فقط القسم الأول: يتكون هذا القسم من أربعة أسئلة وعلى الطالب أن يجيب عنها جميعاً

٣٠ علامة

السؤال الأول: اكتب رمز الإجابة الصحيحة في كل مما يلي:

) اذا كان ق (س) = س + جا ٢س ، فإن متوسط تغير الاقتران ق (س) بالفترة $[\ \ \ \ \ \]$ يساوي

ج. ١

ج. ٤

("") = "" + "" = "" + "" = "" + "" = "" + "" = "

٣) إذا كان المماس المرسوم لمنحنى ق (س) عند النقطة (٢ ، - ١) يصنع زاوية قياسها ١٣٥ مع محور السينات الموجب لمحور السينات فما قيمة نها <u>ق(س) – ق(۲)</u> س \rightarrow ۲ س – ٤

د. – ۱

ج. ١

ب. <u>۱ -</u> ب

أ. ٣

أ. صفر

1 _ 1

عُ) اذا كان (ق \bigcirc هـ) \bigcirc (٣) = ١٥ وكان ق \bigcirc (س) = \bigcirc ، هـ \bigcirc (٣) = ٥ فما قيمة هـ (٣) :

ب. ۱۲ م/ث

د. ٥،١ ج. صفر

 ه) يتحرك جسم على خط مستقيم وفق العلاقة ف (ن) ع (ن) = ن ، ف المسافة بالأمتار ، ن الزمن بالثواني ، ع (ن) السرعة ،وكانت ع (٢) = ٣ م/ث ، فما قيمة التسارع عندما ن = ٢ ثانية

أ. ۱۲ م/ث

ج. - ۸ م/ث٬

د. ۸ م/ث

٦) إذا كان ق(س) كثير حدود من الدرجة الثالثة معرفا على [أ، ب]، ما أكبر عدد ممكن من النقط الحرجة يمكن أن نحصل عليها للاقتران ق(س)

أ ٢

ج. ۱

) إذا كان ق (س) = لوجا س ، س تنتمي للفترة π ، π] ، فإن ق (س) متزايد بالفترة :

 $\begin{bmatrix} \pi & \pi \\ \hline \end{array}$ \therefore $\begin{bmatrix} \underline{\pi} & \underline{\pi} \end{bmatrix}$ \vdots $\begin{bmatrix} \underline{\pi} & \underline{\pi} \end{bmatrix}$ \vdots $\end{bmatrix}$ $\pi & \underline{\pi} \end{bmatrix}$

الرياضيات. **(Y)** الصف: الثاني الثانوي العلمي. ٨) مجموعة جميع جالتي يمكن الحصول عليها من تطبيق نظرية القيم المتوسطة على الاقتران ق (س) = ٦ س _ ١١ في الفترة [٢،٧] هي: د. [۲،۷] ب. { ۲ } 1, 17, 7 ج. { } 9) إذا كان ق(س) = m^{7} = m معرفا في الفترة [m ، ۱] فإن القيمة الصغرى المطلقة للاقتران ق(س) = ج. - ۲۲ أ. - ٢ د. ـ ۱۸ ب. – ٣ = 1 + 1 - 1 فإن = 1 + 1 + 1 = 1 فإن أ- = 1 + 1 = 1 فإن أ- = 1 + 1 = 1 = 1 $\mathfrak{F}. \quad \mathfrak{e} \quad \mathfrak{c}. \quad \mathfrak{f} \quad \mathfrak{f}$ (, ,). $\left(\begin{array}{cc} 1 \\ 1 \end{array}\right)$ اذا کانت ا ۱- ۱ ۱+ ۵ ۳ ، ۱ ۲+ س ۲ فإن قيمة س التي تجعل أ مصفوفة منفردة هي: أ. - ٨و. فإن قيمتي س ، ص على الترتيب: ج. ۳۰،۲ 10, 2, _ .1 اُ. (- ۲) ج. (۲ ۲) ج. (۲ - ۲) د. (۲ - ۹) اُ. (- ۲ - ۲) ؛ (س – ۲) فإن ق (س) = (س – ۱) (س – ۲) فإن ق (س) يكون متناقصا على الفترة : $(m - 1)^{1/2}$ اً.]-∞،-۱] ب. [−۱،۲] ج. [۱،۲] د. غير موجودة ج. صفر ١٦) إذا كانت معادلة العمودي على المماس لمنحنى ق(س) عند النقطة (٣- ٨) هي Y = (-) قَبِن قَيْمَة Y = (-) نَا اللهُ Y = (-)ب. ۱۸ ا ا ج. - ۱۸ ٤ _ ١

(٣) الصف:الثاني الثانوي العلمي. الرياضيات.

= <u>جتا ۲ س - هـ) - جتا ۲ س</u> = (۱۷ هـ → .

أ. ۲ جا ۲ س

د. _جا ۲ س ج. جا ۲ س ب. ۲ جا ۲ س

۱۸) إذا كان لمنحنى ق (س) = m^7 + م m^7 - p س نقطة انعطاف عند m = p ، فإن قيمة الثابت م ج. ۳

،فإن دل عندما ص = ٦ هي: د. - ۲ أ. ٤ ج. <u>۲</u>

(۲۰ جا ٔ هـ جتا ٔ هـ جتا ٔ هـ جتا ٔ هـ جتا ٔ ص جتا ٔ ص جتا ٔ ص جتا ٔ ع جتا ٔ ع

د. صفر ج. ٣ ب. - ۱ ۱. ۱

السؤال الثانى :أ) اذا كان ق (س) = $\sqrt{m+6}+1$ ، س ≥ ٤ ٧علامات ، س < ٤

جد ق (٤) باستخدام تعريف المشتقة

ب) قذف جسم رأسيا إلى الأعلى من قمة برج بحيث أن ارتفاعه عن قمة البرج بالأمتار بعد ن ثانية هو ف (ن) = ۳۰ن _ ه ن جد :

- ١) ارتفاع البرج علما بأن أقصى ارتفاع للجسم عن سطح الأرض = ١٨٠ م
 - ٢) المسافة الكلية المقطوعة خلال الثواني السبعة الأولى.

ج) أوجد نــها هـ + لو س _ هـ^س باستخدام قاعدة لوبيتال. ٣علامات

السؤال الثالث: أ) جد معادلة العمودي على المماس لمنحنى العلاقة 7 + (س - ص) = 9 ٧علامات عند النقطة (س،، - ١) الواقعة على المنحنى.

على [- ۲ ، ۲] $\frac{m}{1+1}$ ب) إذا كان ق (س) = $\frac{m}{m}$ ٧علامات

- ١) عين مجالات التزايد والتناقص للاقتران ق(س).
- ٢) عين القيم القصوى المحلية والمطلقة للاقتران ق(س).

الصف: الثاني الثانوي العلمي. (٤)

ج) إذا كانت أ= $\begin{pmatrix} 1 & 7 & 7 \\ 1 & 1 & 7 \end{pmatrix}$ ، $\dot{\mathbf{r}} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 7 \end{pmatrix}$

جد: ۱) أ^۲ + ۳ م، ۲) أ⁻¹ . ب

السؤال الرابع: أ) اذا كان ق(m) = + 1 س + + 1 س على π

- ١) عين مجالات التقعر للاقتران ق(س) .
- ٢) عين نقط الانعطاف للاقتران ق (س) .

ج) حل المعادلتين التاليتين باستخدام قاعدة كريمر: $0 - 2 \times 1$ $0 - 2 \times 1$

القسم الثاني: يتكون هذا القسم من سؤالين وعلى الطالب أن يجيب عن احدهما فقط

السؤال الخامس: أ) اذ كانت $\omega = (\wedge)^{w} +$ لو $\sqrt[r]{w'} +$ هـ

<u>د ص</u> . د س

 $^{\prime}$ ب) أوجد أقصر مسافة بين النقطة (۲ ، ۰) ومنحنى العلاقة $^{\prime}$ – $^{\prime}$ – $^{\prime}$ = ۸

السؤال السادس :أ) إذا كان ق (س) = m^3 على [أ، ب] حيث أ، ب أعداد موجبة اثبت باستخدام نظرية القيمة المتوسطة أن :

۳ اً ۲ <u>ب" – اً ۲ ج</u> ۳ ب۲ ب

ع علامات

٦ علامات

٨علامات

ب) جد ارتفاع الاسطوانة ذات أكبر حجم والتي يمكن وضعها داخل مخروط دائري قائم نصف قطر قاعدته ٥ سم وارتفاعه ٩ سم .

_ انتهت الأسئلة _

البطريركية اللاتينية مدرسة راهبات مار يوسف الثانوية.

الفصل الثاني

الزمن: ساعتان ونصف. المبحث: رياضيات. الصف: الثاني الثانوي العلمي. التاريخ: ٤ /٤/ ٢٠١٩ مجموع العلامات ١٠٠ المعلم: إبراهيم أبو عبية.

تتكون ورقة الأسئلة من ٦ أسئلة وعلى الطالب أن يجيب عن ٥ فقط القسم الأول : يتكون هذا القسم من أربعة أسئلة وعلى الطالب أن يجيب عنها جميعاً

السوال الأول: اكتب رمز الإجابة الصحيحة في كل مما يلي: ۳۰ علامة

١) اذا كانت [سر،، سر] هي الفترة الجزئية الرائية الناتجة من التجزئة كن للفترة [- ٣،٦] فإن = (س ر - س ر_{-۱}) =

اً _ ا

$$(1) = 0$$
 ، ق $(0) = 1$ فإن $(0) = 1$ د س $(0) = 1$ اذا کان ق $(0) = 1$ د ب $(0) = 1$ د ب $(0) = 1$ د ب $(0) = 1$

2
) $^{-1}$ $^{-$

د. _ ۲ ج. صفر ب. – ٣

أ. _جاس_هـ^س ب. _جاس+هـ^س د. جاس + هـ^س ج. جا س _ هـ^س

 $^{\prime}$ قتا ٔ س ظتا س دس $^{\prime}$

أ. <u>- 1</u> قتا° س + جـ ب. <u>- 1</u> قتا ' س + جـ ج. $\frac{1}{m}$ قتا $\frac{1}{m}$ ب ج. د. $\frac{1}{m}$ قتا $\frac{1}{m}$

د. ٥,٣

الصف: الثاني الثانوي العلمي.

الرياضيات.

۱۰ = (٤) ، قرس) ، هـ (س) ، هـ (س) اقترانين أصليين للاقتران المتصل ق (س) وكان ق (٤) = ۷ ، ق (٤) = ۱۰

ب. ۱٤

د. ۹

٩) إذا كانت كرب تجزئة منتظمة للفترة [٣، ب] وكان العنصر الحادي عشر بالتجزئة يساوي ٦ فإن ب =

ج. ٢

ج. ۲۱

را، $(1 - \omega)$ ق (س (ω) د س افإن (ω) ق (س (ω) د س

$$(1)$$
 اِذَا کَانُ تُ (س) $=$ $\sqrt{m^2-7} \times m^7$ د س $+$ $\sqrt{m^2+7}$ د ص ، فإن تُ (7) $=$ اُ. -7 ب. صفر ج. (7) ح. (7)

ج.

 $\frac{1}{1}$ اِذَا کَان $\frac{1}{1}$ = $\frac{1+7}{1}$ ، فَإِن أَ = $\frac{1+7}{1}$

ب. ۱۰

۳ (۱ + ت) (۲۳

ج. ۸ ـ ۸ ت د. ۸ + ۸ ت

 $= \frac{-1}{2} + \frac{7}{2} + \frac{7}{2} + \frac{7}{2}$ (15)

أ. ٢ ت + ٨

ب. - ۱

ج. ۱

د. ۱ ـ ۲ ت

١٥) إذا كان ميل المماس لمنحني ق (س) عند النقطة (س، ص) يعطى بالعلاقة ٩ س × هـ ٣٠٠ وكان منحنى ق (س) يمر بالنقطة (٠٠ ، ٦) فإن ق (س)

أ. هـ^٣ + ه

ب. هـ^س + ه

ج. ۳ هـ ^{س۳} + ۳

الاقتران الأصلي للاقتران ق (س) = هـ $^{-}$ (لو س + $_{-}$) هو

أ. لوس + جـ ب. ه^س لوس + جـ ج. ٢ ه سلوس + جـ

د. ۲ هـ ۳ + ٤

الرياضيات. **(**^m) الصف:الثاني الثانوي العلمي.

د. - ۲ ج. ۲ ۱ .

١٨) النظير الضربي للعدد المركب ع = ٣ - ٢ ت هو

اً. ٣ - ٢ ت ب. ٣ + ٢٠ ت ج. <u>۳</u> - <u>۲</u> ت

> ١٩) المعادلة التربيعية التي جذرها ١ – ت ، ١ + ت هي: ب. س۲ ـ ۲ س ـ ۲ = ۰ • = ۲ − س ۲ + ۲ س ج. س۲ ـ ۲ س + ۲ = ۰ د. س۲ + ۲ س + ۲ = ۰

> > = (<u>"</u> T/ - 1) <u>" - (" - T/) (*.</u>

د. _ ۲ ت ج. ۲ ت أ. ت

٧علامات السؤال الثانى :أ) باستخدام تعریف التكامل المحدود جد (7 - 3 m) د س

٨علامات ومحور الصادات والمستقيم $\mathbf{m} = \mathbf{a}^{\mathsf{T}}$ دورة كاملة حول محور السينات.

ج) إذا كان $(m+m-1)(m-1)=1+m^9$ ، أثبت أن m=mه علامات

٧علامات $0 \quad 0 \leq w \leq e_{e}$, $e_{e} \leq w \leq Y$ $\left\{\begin{array}{c} \pi^{1} \\ \mu \end{array}\right\} = \left(\begin{array}{c} \pi \end{array}\right)$ اذا کان ق (س) $\left\{\begin{array}{c} \pi \\ 1 \end{array}\right\}$

أوجد الاقتران المكامل ت (س) للاقتران ق (س).

ب) أوجد كلا مما يلى: ٨علامات

۲ س ۳ س + ۰ د س ٢) / لوس دس

ه علامات ج) أوجد الجذور التربيعية للعدد 3 = 0 + 1 + 1 ت الصف:الثاني الثانوي العلمي. (٤)

ه علامات

السؤال الرابع: أ) اكتب العدد $3 = 1 + \sqrt{7}$ ت بالصورة القطبية.

ب) احسب المساحة المحصورة بمنحنى ق (س) = $\frac{1}{2}$ س' والمماس المرسوم له من النقطة (2 ، 3) ومحور السينات.

٩ علامات

ج) اثبت باستخدام التكامل المحدود قانون حجم المخروط الدائري القائم $au=rac{1}{\pi}$ نق 7 ع

القسم الثاني: يتكون هذا القسم من سؤالين وعلى الطالب أن يجيب عن احدهما فقط

السؤال الخامس: أ) مراس د س

ب) اثبت ان $- 9 \leq \frac{7}{4}$ د س ≤ 9 $\frac{1}{4}$ اثبت ان $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

السوال السادس :أ) أوجد $\frac{7 \, (7 \, m - 1)^{7}}{(m + 7)^{7} - 9}$ د س

ب) إذا كانت كن تجزئة منتظمة للفترة [- ٣ ، ٨٧] وكانت النسبة بين العنصر السادس في هذه التجزئة إلى العنصر العاشر هي ١: ٢ جد عدد الفترات الجزئية .

_ انتهت الأسئلة _