المبحث: الفيزساء

الزمين : ساعتان ونصف

التاريخ: 17/ 04 /2019م

مجموع العلامات: (100 علامة)

دولة فلسطين

وزارة التربية والتعليم العالي

مديربة التربية والتعليم _ خانيونس

الامتحان التجريبي لشهادة الدراسة الثانوية العامة من العام 2018 - 2019 م

عدد أسئلة الورقة (ستة) أسئلة, أجب عن (خمسة) أسئلة فقط.

 $c = 3 \times 10^8 \, \text{m/s} \ , \\ h = 6.626 \times 10^{-34} \, \text{J.s} \ , \\ \mu_0 = 4 \pi \times 10^{-7} \, \text{T.m/A} \ , \\ m_e = 9.11 \times 10^{-31} \text{kg} \ , \\ g = 10 \, \text{m/s}^2 \ \\ q_e = 1.6 \times 10^{-19} \, \text{C} \ , \\ r_1 = 0.529 \times 10^{-10} \, \text{m} \ , \\ E_1 = -13.6 \ \text{eV} \ , \\ R = 1.1 \times 10^7 \, \text{m}^{-1} \ , \\ 1u. = 931.5 \ \text{MeV/c}^2 \ \\ \text{MeV/c}^2 = 1.0 \, \text{m/s}^2 \, , \\ \text{MeV/c}^2 = 1.0 \, \text{m/s}^2$

القسم الأول: يتكون هذا القسم من (أربعة) أسئلة, وعلى المشترك أن يجيب عنها جميعاً.

السؤال الأول: ضع دائرة حول رمز الإجابة الصحيحة (30 علامة)

1- مقدار القوة اللازمة لإيقاف سيارة كتلتها (£1000 تتحرك بسرعة (£20 m عندار (4s) هو :

بسمان (x),(y) لهما نفس الكتلة, إذا كانت الطاقة الحركية (x),(y) فإن زخم: -2

 $P_{v} = 4P_{v} - 2$ $P_{v} = 2P_{v} - 2$ $P_{v} = 8P_{v} - 2$ $P_{v} = \sqrt{2} P_{v} - 5$

3- في التصادم عديم المرونة تكون النسبة بين الطاقة الحركية للنظام قبل التصادم الى الطاقة الحركية للنظام بعد التصادم:

4- يدور إطار عزمه الدوراني (I) بسرعة زاوية (ω_1) , عندما يوصل بمحور دورانه إطار آخر ساكن قصوره الدوراني (2I), فإن العلاقة التي تصف السرعة الزاوية للنظام (ω_2) :

 $\omega_1 = 4\omega_2 - \omega_1 = 3\omega_2 - \omega_2 \qquad \omega_1 = 2\omega_2 - \omega_2 \qquad \omega_2 = \omega_2 - \omega_2 \qquad \omega_3 = \omega_3 - \omega_3 = \omega$

 $(L_{
m x})$ وكانت الطاقة الحركية الدورانية $(K_{
m x}=5\,K_{
m y})$, فإذا كان القصور الدوراني $(I_{
m x}=3\,I_{
m y})$ وكانت الطاقة الحركية الدورانية (x,y) فإذا كان القصور الدوراني (x,y)

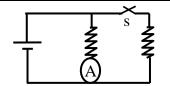
 $15 \, \mathrm{L_y}$ - د $\sqrt{15} \, \mathrm{L_y}$ - ا

وسرعتها الإنسياقية $(1 \times 10^{-3} \text{ m/s})$, ومساحة مقطع $(1 \times 10^{21} \text{ e/mm}^3)$, ومساحة مقطع حدد الإلكترونات الحرة في موصل تساوي $(1 \times 10^{21} \text{ e/mm}^3)$, ومساحة مقطع الموصل (0.1 mm^2) , فإن مقدار الشحنة التي تعبر الموصل خلال دقيقة تساوي:

960 C - ح 9.6 C - ب 960 C - ع 960 C

(16V) مي الشكل يمثل جزءاً من دارة كهربائية ، إذا كانت قراءة الفولتميتر (16V), (16V) من دارة كهربائية ، إذا كانت قراءة الفولتميتر (A) تساوي:

 $oxedow{AMM}$ المستهلكة تكون أكبر ما يمكن في المقاومة: $(30\,\Omega\,,20\,\Omega\,,10\,\Omega)$ وصلت على التوازي فإن القدرة المستهلكة تكون أكبر ما يمكن في المقاومة:


أ- Ω Ω ب Ω Ω ب Ω Ω أ- Ω Ω القدرة عند المقاومات تستهلك نفس القدرة

 $(B_2:B_1)$ ملف حلزونی یمر فیه تیار کهربائی، تم تقسیمه إلی جزأین بنسبة طولیة ((2:3)فإن نسبة علی محوربهما -9

اً- 2:3 ب- 2:1 ج- 2:1

تابع/ صفحة رقم (2)

 $0.96\,\mathrm{C}$ -1

10- مصابيح متماثلة في المقاومة, عند فتح المفتاح في الدارة المقابلة, فإن قراءة الأميتر:

ب- تقل

أ- تزداد

د- تصبح صفر

ج- لا تتأثر

10cm !

الشكل وضعت حلقة دائرية في مستوى الصفحة نصف قطرها $(\pi \mathrm{cm})$ وبسري بها -11

تيار شدته (2A),فما مقدار واتجاه شدة التيار في السلك اللانهائي الطول والذي يبعد عن

مركز الحلقة (10cm) حتى ينعدم المجال المغناطيسي في مركز الحلقة؟

ج- 30A نحو (س السالب) د- 20A نحو (س السالب)

12– التغير في الطاقة الحركية التي تحدثه قوة مغناطيسية مقدارها (10N) على شحنة كهربائية متحركة في مجال مغناطيسي منتظم

وفي مسار دائري نصف قطره (20cm) تساوي:

د- (150) جول

ج- (100) جول

ب- (10) جول

أ- (0) جول

أ- طوله

13- مجال كهربائي $({f E})$ ومجال مغناطيسي $({f B})$ بنفس الاتجاه, إذا قذف بروتون بنفس اتجاه خطوط المجالين، فأي الآتية صحيحة؟

ب- البروتون ينحرف نحو اليمين

أ- البروتون ينحرف نحو اليسار ج- سرعة البروتون تزداد في المقدار

د- سرعة البروتون تقل في المقدار

14- أي من التالية لا تعتمد عليه محاثة الملف الحلزونى؟

د- مساحة مقطعه

ج- شدة التيار

ب- عدد اللفات

15- في الشكل مقاومة الحلقة ((0.1Ω) , إذا تغير التدفق المغناطيسي على الحلقة من ($(0.01\,\mathrm{Wb})$) إلى ($(0.004\,\mathrm{Wb})$) خلال

(0.3s), فإن التيار الحثى في الحلقة عند النظر للحلقة من أعلى:

أ- مع عقارب الساعة وشدته (0.2A) ب- مع عقارب الساعة وشدته (0.02A)

(0.02A) ج- عكس عقارب الساعة وشدته (0.2A) د- عكس عقارب الساعة وشدته

16- جميع ما يلى تساوي صفر في دارة المحث عندما يصل التيار قيمته العظمي ما عدا:

د- القوة الدافعة الحثية

ج- معدل نمو التيار

ب- القدرة الداخلة

أ- الطاقة المختزنة

عنصران (X,Y) , (X,Y) فإن النسبة بين كثافة النواة (X) إلى كثافة النواة (Y) هي: (X,Y)

د- 1:1

2:1 -

اـ- 1:8

8:1 -1

18 - عدد الفوتونات في (10J) من الضوء الأصفر حيث طول موجته (570 nm) تساوي:

 3.49×10^{-19} --

 $3.49 \times 10^{19} -_{\overline{c}}$

 3.5×10^{-20} - 2.86×10^{19} - 1

النسبة بين شدة اشعاع (a)يشع على درجة حرارة (T_1) , وجسم آخر (b)يشع على درجة حرارة $(3T_1)$, فإن النسبة بين شدة اشعاع -19

الجسم (a) إلى الجسم (b):

د- 1:27

1:9 –

ر-1:81

1:3-1

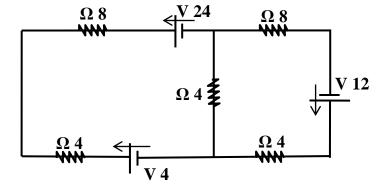
-20 يدور إلكترون في أحد مستوبات الطاقة كما في الشكل, فإن طول موجته المرافقة له بوحدة $({
m n~m})$:

ب- 5.68

5.32-1

د- 2.27

ج- 1.33


تابع/ صفحة رقم (3)

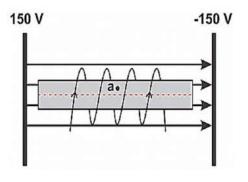
السؤال الثاني: (20 علامة)

- أ- وضح المقصود بالمفاهيم التالية: (6 علامات)
- [1. نظرية الدفع الزخم 2. قانون أوم 3. الهنري
- أثرت قوة ثابتة مقدارها $(4\ N)$ على كرة كتلتها $(0.5\ kg)$ موجودة على سطح أفقي أملس فتحركت من السكون مسافة (1m), حيث اصطدمت بكرة أخرى ساكنة على نفس السطح وكتلتها $(0.5\ kg)$ وبعد التصادم تحركت كل من الكرتين بسرعة $(3\ m/s)$, $(2\ m/s)$
 - 1- الزاوية بين اتجاه حركة الكرتين بعد التصادم مباشرة.

على الترتيب كما في الشكل , جد: (7 علامات)

- 2- ما نوع التصادم.
- ج- في الدارة الكهربائية المجاورة، جد: (7 علامات)
 - 1- شدة التيار المار في كل بطارية.
 - 2- القدرة الداخلة والمستنفذة في الدارة.

4. مبدأ اللايقين].


2m/s

 m_2

3m/s

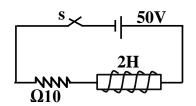
السؤال الثالث: (20 علامة)

- أ- علل العبارات التالية: (6 علامات)
- -1 يثبت دولاب معدني قطره كبير وكتلته كبيرة نسيباً في جذع بعض الآلات.
- 2- ترتفع درجة حرارة سلك التسخين في المدفأة عند مرور التيار الكهربائي فيه.
 - -3 تردد حركة جسيم مشحون يساوي تردد جهد المصدر في السيكلترون.
- 4- الالكترونات الضوئية المتحررة من سطح الفلز تتفاوت في طاقتها الحركية.
- ب-نواة الحديد ($^{A}_{26}$ نصف قطرها (4.591) فيرمي وكتلة النواة تساوي ($^{A}_{26}$ احسب طاقة الربط النووية لكل ب-نواة الحديد ($^{A}_{26}$ احسب طاقة الربط النووية لكل نيوكلون بوحدة ($^{A}_{26}$ علمات) نيوكلون بوحدة ($^{A}_{26}$ علمات)

- في الشكل المجاور وضع ملف حلزوني طوله $(2\pi\,\mathrm{cm})$ وعدد لفاته (25)لفة بين لوحين فلزيين متوازيين على بعد $(10\,\mathrm{cm})$ من بعضهما، عند مرور شحنة سالبة (1-)ميكروكولوم بالنقطة (a) بسرعة $(2\times10^6\,\mathrm{m/s})$ باتجاه محور الصادات الموجب كان مقدار قوة لورنتز المؤثرة على الشحنة تساوي $(5\times10^{-3}\,\mathrm{N})$ فما مقدار التيار المار في الملف الحلزوني؟ (8) علامات $(2\times10^{-3}\,\mathrm{N})$

تابع/ صفحة رقم (4)

السؤال الرابع: (20 علامة)

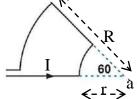

- أ- قارن بين كل من: (4 علامات)
- 1- وظيفة المجال الكهربائي في كل من السيكلترون ومنتقى السرعات.
- 2- المنحنى النظري المستند إلى الفيزياء الكلاسيكية, والمنحنى التجريبي لإشعاع الجسم الأسود من حيث التوافق والاختلاف.
 - الشكل المجاور يبين: مسطرة طولها (1m) وكتلتها (0.3kg) تؤثر عليها قوة

عمودیة (5N) عند أحد أطرافها، فإذا دارت حول محور عمودي یمر من مرکزها (0) مرة وحول محور عمودي یمر بطرفها الآخر (p)مرة ثانیة, احسب التسارع الزاوي عند کل محور من محاور الدوران.

(علامات علامات)
$$\left(I_{\text{مركز}} = \frac{1}{12} M L^2, I_{\text{def}} = \frac{1}{3} M L^2\right)$$

- اعتماداً على بيانات الشكل, إذا كانت القوة الدافعة الحثية المتولِدة في المحث لحظة ما تساوي $(30\,\mathrm{V})$, احسب: (8 علامات)
 - -1 معدل نمو تيار الدارة . -2 الطاقة المخزونة في المحث .
 - 3- القدرة المخزونة في المحث.

القسم الثاني: أجب عن أحد السؤالين التاليين فقط


السؤال الخامس: (10 علامات)

- أ- الكترون ذرة الهيدروجين يتحرك في مداره, أثبت أن الطاقة الكلية لمداره تعطى بالعلاقة: $\left[E_n = \frac{E_1}{n^2}\right]$ 3 علامات)
- $(0.2\,\mathrm{T})$ ب ملف على شكل مربع مساحته $(4\,\mathrm{cm}^2)$ ولفاته (50) لفة , مستواه متعامد مع مجال مغناطيسي منتظم شدته $(150\,\mathrm{rev}\,/\mathrm{min})$ دار الملف بسرعة $(150\,\mathrm{rev}\,/\mathrm{min})$, احسب: $(50\,\mathrm{abs})$
 - 2- متوسط القوة الدافعة الحثية بعد مرور (\$ 0.033).

السؤال السادس: (10 علامات)

1- القوة الدافعة الحثية العظمى.

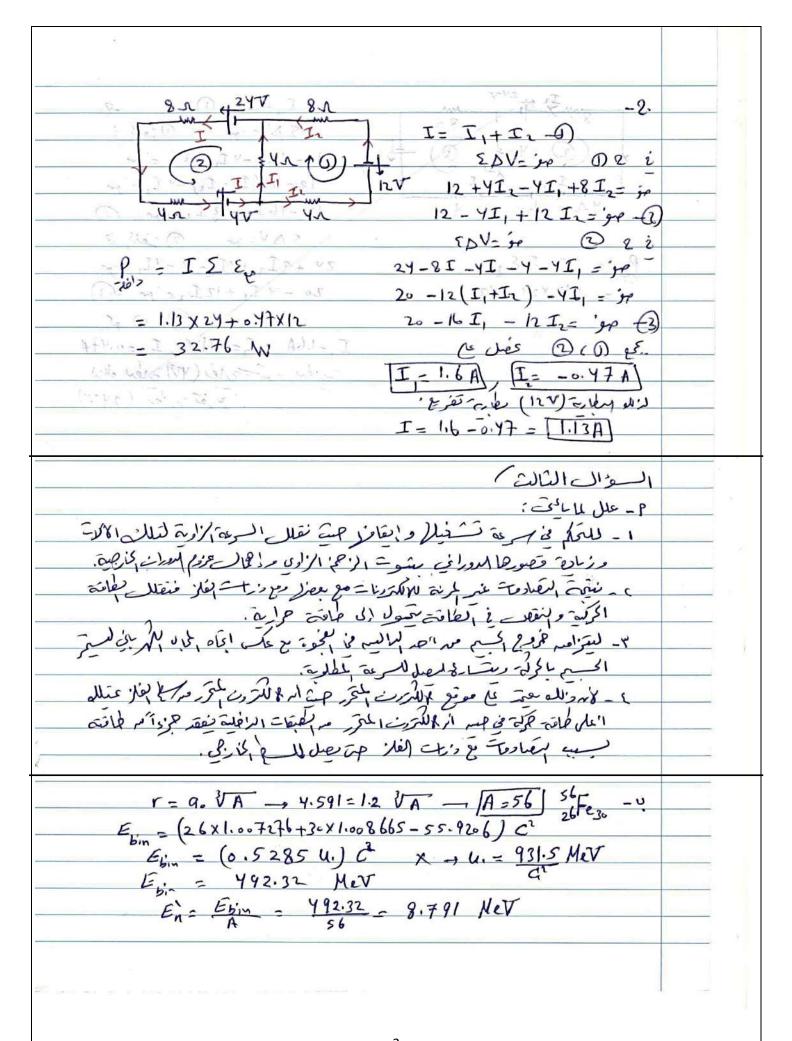
أ- بالاعتماد على الشكل المجاور أثبت أن شدة المجال المغناطيسي عند النقطة تعطى ب:

$$B_{a} = \frac{\mu_{o}I(R-r)}{12(R r)}$$

- سقط ضوء طول موجته (λ) على سطح فلز فانطلق من السطح إلكترون ضوئي جهد القطع له (1.6V), وعندما سقط ضوء آخر طول موجته تساوي نصف طول موجة الضوء الأول على نفس سطح الفلز انطلق الالكترون الضوئي بجهد قطع ضوء آخر طول موجته تساوي نصف طول موجة الضوء الأول على نفس سطح الفلز انطلق الالكترون الضوئي بجهد قطع (5.2V), احسب اقتران الشغل للفلز. (5.2V)

انتهت الأسئلة مع تمنياتنا بالتوفيق والنجاح

الإجابة النموذجية الامتحان التجريبي لشهادة الدراسة الثانوية العامة من العام 2018 – 2019 م


<u> </u>	وال	الأول	1/6	خزالا	رجاب-	· orre			
1	7	٣	٤	0	7	V	٨	9	١.
Ņ	P	2.	>	2.	>	ب	P	>	2-
11	77	14	18	10	דו	M	1/	19	۲٠
٥	P	Q.	2.	P	P	>	P	ب	2

السودال الثاني/

٩- وجي لموقود
ا-نظرية الزعم - الدفع الذي حَدَث لِعَوَة المصلة في المسم علال فترة زمينة
مار ادی التدخ زع کے خلال علی افترہ .
ى _ قابور ارم / المنا بكر عائي لمار في موصل ملزي شناس فرراً موم م اكر بسر فرضه
عند ستو= دهم عراسته الله كتافع إلى رسّنام الرواح مع سود إلى الربائ وا عل لموملاً
٢- بهذي / معامل اكث الذائ لحد تتولد نند مق وا منع حسر معدارها واجد
عول عنماستنر منه ليار عول واحدالسر في الثانين
٤ - صبار اللاعقيم / صراحيل فياس موقة كب وزفية في للفاح مفر ورقة عالية
فلكا زادة دفة إحيام للزع مكة الرفة في قديد الموعة وبعكم صيح .

1 ky=2m/s

F=ma

FE = 9E = 9 \ = 1x10 x 150 -- 150 FE = 3×10-3 N (4) -11-15) مر فلال السر مسرى كورائ ولعوة الفنافسة ع كب للافل ك Fret = V FB + FE

5×10-3 = V FB + (3×10-3) -> FB = 4×103 N Ø FR= 9 UBSin 0 YX10-3= 1x16-6x2x106 B sin 90 -> B= 2x103 T(-x) B = p IN => 2x10-3 = YAX6 X Ix25 => [I=YA] 19-1/1 2/5 ۱- مَارِث : ا- وظفة إلى المراني ن / - المكثرات : على عاربان مردة كه المسرة الماسرة المسترة المستر المنن المنفرار عنوا عترب لعلى لواي مع لعمو فام المرة المرمع وول م الملافاية. المنن المثريبي / عندما عترب بقول لواي معرف في مرتزة المرتفاع تؤول إلى معرف ب_ اكالة الاوى / فحور لرورات عندا عزاء / I = 12 ML = 12 x 0.3 x (1) 2 = 0.25 kg m T= rFsin 0= 0.5x5 singo = 2.5 N.m <= = = 2.5 = 100 rd/s

- 100 rd/s = 100 rd/s / air all I = = 1 ML = 1 x0.3x(1) = 0.1 kgm T = 1 x 5 x 8/n 90 = 5 Nim X = = = 5 = 50 rad/s'

= -3. V S = -1: NT	
$\hat{\Sigma} = -\text{Lin} \Delta \hat{T}$	
$-3^{\circ} = -2 \xrightarrow{\Delta T} \xrightarrow{\Delta T} = 15 \text{ Als}$	
$\frac{\Delta T}{\Delta t} = \frac{1}{\text{Lin}} \left(\varepsilon - T \Sigma R \right)$	
15= \frac{1}{2} (So - IX10) - I = 2 A	
$E = \frac{1}{2} \lim_{x \to \infty} I^{2} = \frac{1}{2} \times 2 \times (2)^{2} = 4 $	
$P = I\left(\lim_{\Delta t} \frac{\Delta T}{\Delta t}\right)$	
= 2×2×15 = 60 W	
الــــــــــــــــــــــــــــــــــــ	
ع - الطاقة الله المائد العالمة العالم	
$E_n = K + U = \frac{1}{2} m_e U^2 + \frac{k q^2}{r_n}$	477
W= K& Jsk erais'pre	
$E_n = \frac{1}{2} \frac{kq^2}{me^{r_n}} - \frac{kq^2}{r_n} = -\frac{1}{2} \frac{kq^2}{r_n} = -\frac{1}{2} \frac{kq^2}{r_n}$	
$\left(E_{n} = \frac{Cont_{i}}{n^{2}} = \frac{E_{I}}{n^{2}}\right)$	
$\omega = 2\pi f = 2\pi \times 150 = 5\pi \text{ rad/s} \qquad -1 - \psi$ $\Sigma_{\text{max}} = NBA\omega = 5. \times 0.2 \times 4 \times 10^{4} \times 5\pi = 10^{-1}$	
Emax = NBAW= 50 X 0.2X YXIO X5TT =	
Emax = 0.063 V.	
0, = gp, 02 = wt = 5 TX 0.033 = 30°	
$\frac{\dot{\varepsilon} = -N \Delta \dot{\Phi}}{\Delta \dot{\tau}} = -N B A (\cos \theta_2 - \cos \theta_1)$	
= - 50 × 0.2 × Y × 10 - (Cos 30 - cos gre)	
0.033	
£ = 0.016 V.	

ال ال المال
٩- عباب اللقة إصغ للما غل ٥٠ عبال اللقة النبرى للنارو
الم المرابع ال
$N = \frac{\theta}{360} = \frac{60}{360} = \frac{1}{6} = \frac{1}{6}$
0 0 0
Ba = Bigo - Bus
$B = \frac{\int_{0}^{\infty} \frac{I \times \frac{1}{6}}{2r} - \int_{0}^{\infty} \frac{I \times \frac{1}{6}}{2R} = \int_{0}^{\infty} \frac{I}{12} \left(\frac{1}{r} - \frac{1}{R} \right)$
$B = \frac{1}{2r} - \frac{1}{2r} = \frac{1}{2r} = \frac{1}{2r} = \frac{1}{2r}$
$B = \frac{MT}{R} \left(\frac{R-r}{Rr} \right) +$
The state of the s
E = \$\phi + k_{mark} = \frac{1}{2}
75 7 0 75
hc = p + 9. V.
hc = \$ + 1.6 % = 1 = ist, ion
X = 7 le d'élier
hc d s 2 9
$\frac{hC}{\frac{1}{2}\lambda} = \phi + 5.2 $
2 hC = + 5.1 g. O~
A
2(+1.62) = +5.2 le
20 + 3.2% - 0 + 5.29 0 = 29. = 12 eV
24 +3.2 he = 4+5,1 ye -94 = 2 he = 12 eV
(alp) (alp)
·
70