وزارة التربية و التعليم مديرية التربية و التعليم / قباطية

المبحث: الرياضيات

الامتحان المناطقي " الجلسة الاولى"

الصف: الثاني عشر العلمي التاريخ: ٢٠٢٠/ ٤ / ٢٠٢٠

الزمن: ساعتان ونصف مجموع العلامات: ١٠٠ علامة

ملاحظة: عدد اسئلة الورقة (سته) اسئلة، اجب عن (خمسة) منها فقط

القسم الأول: يتكون هذا القسم من أربعة أسئلة، وعلى المشترك أن يجيب عنها جميعها.

(۳۰ علامت)	السؤال الأول: اختر رمز الإجابة الصحيحة ،ثم ضع إشارة (×) في المكان المخصص في دفتر الإجابة
	$(\omega)_{\Lambda} = (\lambda)_{\Lambda} = (\lambda)_{\Lambda}$

1) Ich کان فہ(۱) =
$$7$$
 ، جد نہی $\frac{\omega \cdot \kappa(1) - \varepsilon \kappa(\omega)}{\omega - 1}$.

۲) -۳ ج) ۲ حفر

۲) اذا كان $\mathfrak{o}_{\kappa}(m) = m^{7} \mathfrak{a}(m)$ ، وكان متوسط التغير للاقتران $\mathfrak{a}(m)$ في الفترة [-7,7] يساوي (7)، فما مقدار التغير في الاقتران $\mathfrak{o}_{\kappa}(m)$ على نفس الفترة .

۲) ۳ (۶ ج) ۲۸ د) ۵۲ د) ۵۲ د)

") يتحرك جسم في خط مستقيم بحيث يتحدد موقعه بالأمتار عن نقطة ثابتة بعد ω ثانية بالعلاقة $\omega(\omega) = \omega^{-1} - \omega$ + $\omega(\omega) = \omega^{-1} - \omega$ + $\omega(\omega) = \omega^{-1} - \omega$ + $\omega(\omega) = \omega$

اً) صفر مرث با مرث جا مرث مرث د) ۲۵ مرث ا

ک) اذا کان ($\gamma \circ U$) (m) = m ، وکان $\gamma(m) \circ U(m)$ اقترانین قابلین للاشتقاق حیث $\gamma(m) = \frac{1}{m}$ اذا کان $(\gamma \circ U) \circ U(m) = \frac{1}{m}$ صفر ، فما قیمة $(m) \circ U(m)$.

٩) ١ (س) د) ل(س) د) ل(س)

(-1) ه (-1) ه ه (-1) ه ه (-1) ه ه ه ه (-1) ه (-1) ه ه (-1) ه (-1)

۲) - ۲ ب صفر ج) ۲ د) ٤

(7) اذا کان المستقیم (7)

۲) ۲۰ (۶ ج) ۲ د (۲ د) ۲

۹) صفر ب جا۲س

ب) ٣

 $\frac{w-v}{1+w} = \frac{w-v}{1+w}$ اقتراناً معرّفاً على الفترة [v*v] وقابلاً للاشتقاق على الفترة [v*v] الذا كان [v*v] القرراناً معرّفاً على الفترة [v*v]

، فما عدد النقط الحرجة للاقتران فم(س).

ج) ٤ (ج

د) [۳، ٥]

۹) صفر ب ۳

Y (P

٣- (P

۱۲) اذا کان لمنحنی الاقتران $\mathfrak{o}_{\kappa}(m)=m^{-\kappa}+m^{-\kappa}+m^{-\kappa}$ نقطة انعطاف افقی ، فما قیمة الثابت 1 .

ب) - (ب

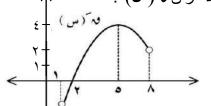
ج)]٣،٥[

م کر (\mathfrak{r}) عظمی محلیة د) (\mathfrak{r}) صغری محلیة (\mathfrak{r}) عظمی محلیة د) (\mathfrak{r}) صغری محلیة (\mathfrak{r}) عظمی محلیة د) (\mathfrak{r})

۱۵) اذا کان $\mathfrak{o}_{\kappa}(m)$ اقتراناً بحیث $\mathfrak{o}_{\kappa}(m) = (m-m)^{1}(m-m)^{2}(m-n)^{3}$ ، فما الفترة التي یکون فیها منحنی $\mathfrak{o}_{\kappa}(m)$ متزایداً .

 $[\circ, \Upsilon] (\circ) \qquad [\Upsilon, V] (\circ) \qquad [V, \infty - [V, \infty]) (\circ)$

١٥) الشكل المجاور يمثل منحنى فه (m) ، ما قيمة ظل زاوية الانعطاف لمنحنى الاقتران فه(m) .



ج) ٤ (ج

۹) صفر

ر کانت $^{\prime}=$ $^{\prime}$ ، $^{\prime}$ ، $^{\prime}$ ، $^{\prime}$ ، $^{\prime}$ ، $^{\prime}$ ، وکان $^{\prime}$ ، $^{\prime}$.

حيث γ المصفوفة المحايدة ، فما قيمة المقدار $\gamma + b$.

 9 ($^{\circ}$

اذا کانت ${}^{0}=\begin{bmatrix} w & -w \\ 1 & w \end{bmatrix}$ ، وکان ${}^{1}=\begin{bmatrix} 1 \\ 1 \end{bmatrix}=\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ، فما قیمة / قیم المقدار سm .

۱۸) اذا کان
$$\begin{bmatrix} w \\ 1 \end{bmatrix}$$
. $\begin{bmatrix} Y \\ 1 \end{bmatrix}$ ، فما قیمة / قیم w .

$$\begin{bmatrix}
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -1 \\
 & -$$

$$\begin{vmatrix} 1 & \cdot \\ -1 & \cdot \end{vmatrix} = 7$$
 ، فما قیمة $\begin{vmatrix} 1 + c & \cdot \\ -1 & \cdot \end{vmatrix}$. $\begin{vmatrix} 1 + c &$

۲۰ علامت السؤال الثاني:

ر۱ علامات)
$$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 ، $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$) اذا کانت $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

$$(1+ \nabla w - 6w^{7})$$
 ، ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$ ، $\leq w < 1$ $= (1+ \nabla w - 6w^{7})$.

۲۰ علامت السؤال الثالث:

(۱۲ علامات) ناد کان
$$(x-y)^{-1}$$
 ، جد:

۲) القيم القصوى المحلية للاقتران $\mathfrak{o}(m)$ ۱) مجالات التزاید والتناقص للاقتران $\mathfrak{o}(oldsymbol{w})$

(w) مجالات النقعر للاعلى وللاسفل ونقط الانعطاف (ان وجدت) لمنحنى الاقتران (w)

(۸ علامات)

ب)قذف جسم رأسياً لأعلى من قمة برج ارتفاعه ٨٠م ، بحيث ان ارتفاعه عن البرج بالامتار بعد ٧٠ ثانية يعطى بالعلاقة ف $(N) = NN - 0N^{7}$ ، جد:

١. اقصى ارتفاع يصله الجسم من سطح الارض.

٢. سرعة الجسم عندما تكون المسافة الكلية المقطوعة ٥٠ م.

السؤال الرابع: ٢٠ علامة

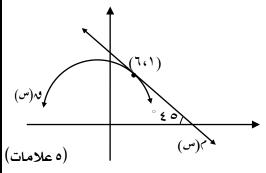
ر علامات) .
$$\left[\pi \circ \right] \ni \omega \circ \frac{1}{7} = \left| \begin{array}{cccc} \gamma & \omega & -1 & 0 \\ -1 & \omega & -1 & 0 \\ 1 & \omega & -1 & 0 \end{array} \right|$$
 . $\left[\pi \circ \right] \circ \left[\pi \circ \left(\frac{1}{7}\right) \circ \left$

ب) اذا كان المماس لمنحنى $(m) = L_0 = \frac{m}{\sqrt{\gamma}}$ عند $m = \gamma$ يقطع محوري السينات و الصادات في النقطتين ب $(m) = L_0 = \frac{m}{\sqrt{\gamma}}$ على الترتيب، جد مساحة المثلث $(m) = L_0 = \frac{m}{\sqrt{\gamma}}$ نقطة الاصل .

ج) اذا کان فہ(س) = ه m + ه $^{-m}$ ، اثبت باستخدام القیم القصوی ان الاقتران فہ(س) \geq ۲ ، \forall س \in 9 .

القسم الثاني: يتكون من سؤالين وعلى المشترك ان يجيب عن احدهما فقط

السؤال الخامس:



ب) اذا کان فہ (س) کل ﴿ (س) اقترانین قابلین للاشتقاق ، بحیث فہ (س) = (m+7) ل ﴿ (7m) وکان (m) مماساً للاقتران فہ (m) عند $(7 \cdot 7)$ کما هو موضح في الشکل ، جد ل ﴿ (7) .

السؤال السادس:

أ) جد النقطة التي تقع على منحنى العلاقة ص $\sqrt{m^2+7m+1}$ وبعدها عن النقطة $\binom{1}{2}$ أقل ما يمكن . $\binom{6}{6}$ علامات

(ه علامات) .
$$^{-}(\gamma)$$
 جد $(\gamma)^{-}($

— انتهت الأسئلة ——

بالتوفيق للجميع