

دليل تقويم الطالب في مبحث الرياضيات الصف الثاني عشر الفرع العلمي والصناعي

الفصل الدراسي الأول

۲۰۲۰–۲۰۲۰ الطبعة الشانية مديرية التربية والتعليم - غرب غزة قسم الإشراف والتأهيل التربوي

دليل تقويم الطالب

કુ

ميث الراضات

للصف الثاني عشر الفرع العلمي والصناعي الفصل الأول

إعداد

لينة سميح داوود

نعلة جواد صباح

إشراف

أ. باسم محمد المدهود

د. رحمة محمد مودة

أ. إبراهيم صالحة

أ. هدى سالم النربعي

7.71- 7.7.

# مقدمة دليل التقويم

في إطار جهود وزارة التربية والتعليم الفلسطينية للارتقاء بالوطن الحبيب فلسطين تم تطوير المناهج الفلسطينية الأولى لمدة تزيد على عشرة أعوام - تطوير المناهج الفلسطينية الأولى لمدة تزيد على عشرة أعوام فخرجت إلى النور المناهج الجديدة التي تسعى إلى تربية المواطن الفلسطيني القادر على الاستقراء والاستناج في الإطار المعرفي المنبثق من السياق الحياتي وفي ضوء ارتباطه بقيم ومبادئ تاريخنا وحاضرنا.

ودعماً لجهود وزارة التربية والتعليم وتحقيقاً لمبدأ التكامل والتكافل في إنجاح المسيرة التعليمية فإن لجنة مبحث الرياضيات بمديرية التربية والتعليم -غرب غزة - تقدم هذا الجهد المتواضع المتمثل في تجميع أسئلة امتحانات الثانوية العامة في مبحث الرياضيات وتصنيفها حسب وحدات الكتاب ودروسه مرفقة بالاجابات النهائية وذلك خدمة لأبنائنا الطلبة وتسهيلاً عليهم في متابعة الأسئلة الوادرة في امتحانات الثانوية العامة أولا بأول من أجل الوصول للدرجات العالية في مبحث الرياضيات.

وإذ نخط هذا الدليل راجيين من الله لطلبتنا التوفيق والسداد شاكرين لكل من ساهم وشارك في اتمام هذا العمل.

المشاركون

هبة فاروق موسى وفاء محمد الروبي هانم سليم النخالة

#### فهرس المحتويات

| ٥ | الوحدة الأولى: حسابم التفاخل                                     |
|---|------------------------------------------------------------------|
| ٦ | الدرس الأول: متوسط التغير                                        |
| ١ | الدرس الثاني : قواعد الاشتقاق                                    |
| ۲ | الدرس الثالث: مشتقة الاقترائات الدائرية                          |
| ۲ | الدرس الرابع : قاعدة لوبيتال ومشتقة الاقتران الأسي واللو غاريتمي |
| ۲ | الدرس الخامس : تطبيقات هندسية وفيزيانية                          |
| ٤ | الدرس السادس: قاعدة السلسلة                                      |
| ٥ | الدرس السابع : الاشتقاق الضمني                                   |
|   | الوحدة الثانية : تطبيقات التفاضل                                 |
|   | الدرس الأول: نظريتا رول والقيمة المتوسطة                         |
|   | الدرس الثاني : الاقترانات المتزايدة والمتناقصة                   |
|   | الدرس الثالث: القيم القصوى                                       |
|   | الدرس الرابع: التقعر ونقط الانعطاف                               |
|   | الدرس الخامس: تطبيقات على القيم القصوى                           |
|   | الوحدة الثالثة: المصفوفات                                        |
|   | الدرس الأول: المصفوفة ١ .                                        |
|   | الدرس الثاني: العمليات على المصفوفات                             |
|   | الدرس الثالث: المحددات                                           |
|   | الدرس الرابع: النظير الضربي للمصفوفة المربعة                     |
|   | الدر س الخامس: حل أنظمة المعادلات الخطبة باستخدام المصفو فات     |

الوحدة الأولى حساب التفاضل

#### الدرس الأول: متوسط التغير

| الجواب | السؤال                                                                                                                                             | السنة                |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|
| ţ      | ا كان ص (س) = س <sup>٢</sup> ، فإن قيمة متوسط التغير عندما تتغير س من - ١<br>. ٣ هي :                                                              |                      |  |  |  |  |
|        | أ) ٢ ب ٢,٥ (ب ج) ٤                                                                                                                                 |                      |  |  |  |  |
|        | ا كان متوسط تغير الاقتران ق (س) بين س = ١ ، س = ٣                                                                                                  | ۲۰۰۷ إذ              |  |  |  |  |
| ج      | $oldsymbol{\Lambda} = oldsymbol{(\Upsilon)} = oldsymbol{(\Lambda)} = oldsymbol{(\Lambda)} = oldsymbol{(\Lambda)}$ اوي $oldsymbol{(\Lambda)}$ وكانت | دراسات <sub>یس</sub> |  |  |  |  |
|        | اً) ۱۲                                                                                                                                             | إكمال                |  |  |  |  |
|        | إذا كان $v(m) = m + [m]$ ، فإن قيمة متوسط التغير في $\left\lceil \frac{1}{7} \right\rceil$ هي:                                                     |                      |  |  |  |  |
| ب      | اً) ۲                                                                                                                                              | 7                    |  |  |  |  |
|        | وسط تغير الاقتران $oldsymbol{v}(oldsymbol{w}) = oldsymbol{w}^{\prime} + oldsymbol{w} - oldsymbol{o}$ عندما تتغير س من                              |                      |  |  |  |  |
| ج      | إلى ٤ يساوي :                                                                                                                                      |                      |  |  |  |  |
|        | أ) –۱۸ ب) –٦ جـ) ٦                                                                                                                                 | إكمال                |  |  |  |  |
|        | ا كان متوسط تغير الاقتران ق (س) في الفترة [١٦٢١] يساوي ٩                                                                                           | إذ                   |  |  |  |  |
| ج      | ن متوسط تغير الاقتران $\mathcal{U}^{(w)}$ في الفترة [٤٠١] يساوى :                                                                                  | ۲۰۱۰<br>فإ<br>إكمال  |  |  |  |  |
|        | أ) q                                                                                                                                               | - ' \$               |  |  |  |  |

| الجواب   |                | ىىۋال                       | ال                               |                     | السنة    |
|----------|----------------|-----------------------------|----------------------------------|---------------------|----------|
|          | [١٤٤-] ة       | ن ق (س) في الفتر            | نوسط التغير للاقترا              | إذا علمت أن من      |          |
| ب        |                | ?=(٤-)ı                     | ں (۱) = ۲ ، فإن ر                | يساوي ٣، وأن        | 7.11     |
|          | د) ۱۵          | ج_) ۱۳                      | ب) –۱۳                           | اً) - ٥ ا           |          |
|          | يساوي ٥ ،      | ت) في الفترة [٤٤١]          | تغير الاقتران 0 (س               | إذا كان متوسط       |          |
| د        |                | اوي :                       | : ۳، فإن <i>ن</i> (۱) يس         | وکان 🗸 (٤) =        | 7.14     |
|          | د) – ۲۲        | ج) ٣                        | ب) ١٥                            | أ) ۱۸               |          |
|          | ا يساوي ٥      | ِس) في الفترة [٤٤١]         | التغير للاقتران 0(               | إذا كان متوسط       |          |
| ħ        |                |                             | ز <b>ن</b> ن (٤) = ؟             | ن (۱) = ۲ فإر       | 7.18     |
|          | د)۱۳(۵         | ج) ١٥                       | ب) ۱٦                            | أ) ۱۷               |          |
|          | وكان متوسط     | ۲) = ن (۰) ا                | اقتراناً بحيث $oldsymbol{arphi}$ | إذا كان ق (س)       |          |
| د        | هي :           | وي ١٠ فإن قيمة أ            | ي الفترة [٥٤٣] يسا               | تغیر <b>0</b> (س)فج | 7.17     |
|          | ۷۰- (۵         | ٠- (ج                       | ٥- (ب                            | ۲۰ (أ               |          |
|          | كان متوسط تغير | على [١،١] بحيث كَ           |                                  |                     | 7.17     |
| <b>†</b> |                | ٣ فإن قيمة ب هي :           | ك الفترة يساوي -'                | <b>ں</b> (س)في تلا  | اكمال    |
|          | د) ۴           | ج) ٤                        | ب) ۳                             | ۱) ۲                | ( a.c. ) |
|          | ۱] يساوي ۹     | <i>ب) في الفترة [٧٠٢</i>    | تغير الاقتران ق (س               | إذا كان متوسط       |          |
| د        | الفترة [١٠٤]   | $= \mathcal{U}(m^{'}+1)$ في | بر الاقتران <b>هـ (س</b> )       | فإن متوسط تغب       | 7.17     |
|          |                |                             |                                  | يساوي :             |          |
|          | ٤٥ (٦          | <del>ذ)</del> ٥ (           | ٤٩ (ب                            | اً) ٣               |          |

| الجواب | السؤال                                                                                                        | السنة             |
|--------|---------------------------------------------------------------------------------------------------------------|-------------------|
|        | إذا كان متوسط تغير $\sigma$ (س) عندما تتغير س من $\mathbf{n} = \mathbf{n}$ مساوياً ٥، فإن متوسط تغير الاقتران | 7.17              |
| ب      | $Y = \mathcal{V}^{T}$ ن س $\mathbf{v} = \mathbf{v}^{T}$ ن س $\mathbf{v} = \mathbf{v}^{T}$ ن س                 | الدورة<br>الثانية |
|        | أ) ۱۰ (ب ۲۰ جـ) ۲۰ د) - ۶۰                                                                                    | <u>"</u>          |
|        | إذا كان متوسط تغير $\sigma(m) = m^{-}$ في الفترة [١٠١+ أ] يساوى ٩                                             |                   |
| ح      | فإن قيمة أ:                                                                                                   | 7 • 1 ٨           |
|        | أ) • ب) ٣ جـ) ٧                                                                                               |                   |
|        | إذا كان متوسط تغير ق (س) في الفترة [٢٠٢] يساوي ٣٠ وكان                                                        |                   |
|        | $oldsymbol{a}(w)=oldsymbol{v}$ فإن متوسط تغير الاقتران $oldsymbol{a}(w)$ في                                   | 7.17              |
| f      | ً<br>ذات الفترة <u>:</u>                                                                                      | الدورة<br>الثانية |
|        | أ) <i>- ۲ ب ب ۱ جـ ۱ د)</i> ۲                                                                                 |                   |
|        | إذا كان التغير في الاقتران ص = ق (س) يساوى هس الم هـ + اهـ                                                    | 7.17              |
| ب      | وكان $\upsilon'(\Upsilon) = 0$ فإن قيمة ٢ هي :                                                                | الدورة            |
|        | أ) –۱ ب) ۱ جـ) ٥ د) ٩                                                                                         | الثالثة           |
|        | إذا قطع المستقيم ل منحني الاقتران $v(m)$ في النقطتين $v(n)$                                                   |                   |
| د      | نهما قياس زاوية ميل المستقيم ل علما بأن التغير في $(\pi) arphi \cdot \pi)$ ، فما قياس                         | 7.19              |
|        | $\pi$ - یساوی $\pi$ افترة $\pi$ د، $\pi$ ایساوی $\pi$                                                         | 1 - 1 1           |
|        | $\frac{\pi \Upsilon}{\xi}$ (ع $\frac{\pi}{\Upsilon}$ (ج $\frac{\pi}{\xi}$ (د)                                 |                   |

| الجواب |                                                         | لسؤال                                                          |                                |               | لسنة    |  |
|--------|---------------------------------------------------------|----------------------------------------------------------------|--------------------------------|---------------|---------|--|
|        | إذا كان متوسط تغير $u(m)$ في الفترة $v(m)$ يساوى $v(m)$ |                                                                |                                |               |         |  |
| Î      |                                                         | <b>?</b>                                                       | فما قیمة $v(-1)$               | 、             | 7.19    |  |
|        | د) ۱۷–                                                  | ٧- (ج                                                          | ب) ۸                           | ۱۸ (أ         | صناعی   |  |
|        | « س <sup>م</sup> حيث س                                  | (س) = س+لــو                                                   | . التغير للاقتران <sup>ي</sup> | إذا كان متوسط |         |  |
| f      | ۶ م غ                                                   | عندما تتغير س من ١ إلى هـ يساوي $\frac{7-a}{1-a}$ فما قيمة ٧ ؟ |                                |               |         |  |
|        | د) ۲هـ –۳                                               | جـ) ٣-                                                         | ب) ۱                           | ۱– (أ         |         |  |
|        | ٣٣ في الفترة                                            | $-^{Y} w Y = (w)$                                              | . التغير للاقتران 0            | إذا كان متوسط | ۲۰۲۰    |  |
| Ť      | [۲۲۲] يساوي ۱٦ ، ١٥>٠ فما قيمة ١٩                       |                                                                |                                | الدورة        |         |  |
|        | د) <del>۲۲</del>                                        | ج_)١                                                           | <del>ا ا</del> (ب              | ۲ (۱ٔ         | الثانية |  |

### القسم الثاني: أجب عن الأسئلة التالية

| الجواب                      | السؤال                                                                                                                                                                                                                                                        | السنة      |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| ٣                           | لیکن $\sigma(m) = \begin{cases} 7m + 3 & 3m < 7 \\ m' + 7m & 3m \geq 7 \end{cases}$ أو جد متوسط تغیر $\sigma(m)$ عندما تتغیر $m$ من $m$ إلى $m$                                                                                                               | ۲۰۰۷ اکمال |
| <del>Y</del>                | إذا كان المستقيم القاطع لمنحنى الاقتران $\sigma$ ( $m$ ) في النقطتين (١٥٠ (١)) ، ( $\sigma$ , $\sigma$ ) ، يصنع زاوية مقدارها $\sigma$ $\sigma$ أ مع محور السينات الموجب . احسب متوسط التغير للاقتران $\sigma$ ( $\sigma$ ) = $\sigma$ في الفترة [ $\sigma$ ] | 79         |
| ۲                           | ۲۰۱۰                                                                                                                                                                                                                                                          |            |
| ١٣                          | إذا كان متوسط تغير الاقتران ق (س)على [-٢،٢] يساوي ٥ جد<br>متوسط تغير الاقتران هـ (س) = ٣ق (س) – ٢س على نفس الفترة .                                                                                                                                           | 7.15       |
| ٧                           | إذا كان متوسط تغير الاقتران ص (س) في الفترة [٢٠١] يساوي ٤<br>ومتوسط تغير ص (س) في الفترة [٢٥٠] يساوي ٨، فما متوسط تغير<br>ص (س) في الفترة [٥٠١]؟                                                                                                              | 7.10       |
| ه ٔ + ۲ه – ۳<br>۱ + ه<br>–۳ | إذا كان $w$ $b$                                                                                                                                                                                                           | 7 • 1 9    |

| الجواب               | السؤال                                                                                                   | السنة |
|----------------------|----------------------------------------------------------------------------------------------------------|-------|
|                      | إذا كان $oldsymbol{v}(oldsymbol{w})	imesoldsymbol{\wedge}$ ، وكان كل من الاقترانين                       |       |
|                      | $arphi(m)$ کھ $(m)> \cdot ھ\forall m> \cdot، وکان$                                                       |       |
| <u>१६ –</u><br>१ ५ – | $arphi$ ن (٥) $=$ $\Upsilon 	au = arphi$ $arphi$ $arphi$ $arphi$ $arphi$ $arphi$ $arphi$ $arphi$ $arphi$ | 7.7.  |
|                      | التغير للاقتران ه (س) على الفترة [٤٤١] علماً أن متوسط التغير                                             |       |
|                      | للاقتران ص (س) على الفترة [٤٤١] يساوي <del>٣</del>                                                       |       |

#### الدرس الثاني: قواعد الاشتقاق

| الجواب | السؤال                                                                                                       |                                                                                                                                    | السنة     |
|--------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ţ      | $ ho$ ا فإن $oldsymbol{v}$ = $ ho$                                                                           | إذا كان 🗸 (س) =                                                                                                                    | Y • • • V |
|        | ب) ۱ جـ) ٥ د) غيرموجودة                                                                                      | أ) صفر                                                                                                                             |           |
|        | >صفر، ∀س∈(اىب)، ج∈(اىب)، فإن ق (س)عند                                                                        | إذا كان 0 '(س)>                                                                                                                    |           |
| Î      |                                                                                                              | <i>س =ج</i> يكون :                                                                                                                 | Y • • • V |
|        | ب) منفصل جـ) متناقص د) مقعرللأعلى                                                                            | أ) متصل                                                                                                                            |           |
|        |                                                                                                              | فقط                                                                                                                                |           |
|        | متصلاً عند $m=1$ فإن                                                                                         | إذا كان ق (س) ،                                                                                                                    |           |
| د      | · ب ن'(أ)موجودة                                                                                              | $=\left( \mathring{1}\right) ^{\prime }\upsilon \ (\mathring{1}% )=\left( \mathring{1}\right) ^{\prime }\upsilon \ (\mathring{1})$ | Y • • V   |
|        | موجودة د تكون موجودة $\upsilon'$                                                                             | جـ) <b>0</b> (أ)غير،                                                                                                               | اكمال     |
| f      | $? = \frac{(w) - (w) - (w)}{w - w}$ فإن نهي $\frac{v + v}{v - w}$ = ?                                        | إذا كانت 0 '(س                                                                                                                     | ۲۰۰۸      |
|        |                                                                                                              | <b>۲۲- (أ</b>                                                                                                                      |           |
|        | <b>١=(Y)' υ : 0=(Y) υ : λ=(ω) &amp;+</b>                                                                     | إذا كان ن(س)-                                                                                                                      |           |
| ب      | ه (س)) عندما <b>س</b> = ۲ تساوي :                                                                            | فإن <u>ح</u> (س+                                                                                                                   | 79        |
|        | ب) صفر                                                                                                       | 1(1                                                                                                                                |           |
| د      | $?=\frac{\mathcal{C}(Y)\mathcal{O}-\mathcal{O}(Y)\mathcal{O}}{2}=$ $=$ $\mathbb{P}^{Y}$ $=$ $\mathbb{P}^{Y}$ | إذا كان 🗸 (س) =                                                                                                                    | 79        |
|        | ب) ۱۰ (ب<br>ب) ۱۰ (ب                                                                                         | ۱۲ (۱ٔ                                                                                                                             | إكمال     |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | السنة         |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| ح      | $ \begin{vmatrix}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1.          |  |  |
| ب      | $? = \frac{(1) \upsilon - (\omega) - \omega}{(\omega)}$ ۽ فإن $\frac{3}{4}$ ، فأن $\frac{3}{4}$ | ۲۰۱۰<br>إكمال |  |  |
| ح      | إذا كان $\mathfrak{G}(m) = m^{7} - m^{7}$ فإن $\frac{\mathfrak{G}'(1+a) - \mathfrak{G}'(1)}{a} = ?$ أ) صفر ب) ۱ جـ) ٤ د) غير موجودة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.17          |  |  |
| ب      | الاقتران $\upsilon$ ( $\upsilon$ ) = [ $\upsilon$ + $\iota$ ,۰) متصل عندما $\upsilon$ =?<br>أ) $\iota$ - $\iota$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲۰۱۲<br>إكمال |  |  |
| د      | إحدى العبارات التالية صحيحة دائما:  أ) إذا كانت $\mathfrak{O}'(1)$ موجودة فإن $\mathfrak{O}''(1)$ موجودة  ب) إذا كان $\mathfrak{O}(m)$ اقترانا متصلاعند $m=1$ فإن $\mathfrak{O}'(1)$ موجودة  ج) إذا كانت $\mathfrak{O}'(1)$ غير موجودة فإن $\mathfrak{O}(m)$ اقترانا ليس متصلاعند $m=1$ د) إذا كانت $\mathfrak{O}'(1)$ موجودة فإن $\mathfrak{O}(m)$ اقترانا يكون متصلا عند $m=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |
| د      | $?=\left(\frac{1}{7}\right)'$ إذا علمت أن $o$ (س) = [٤س + ١] فإن $o$ أ $=$ ? أ $=$ 4 ب أ $=$ 4 ب أ $=$ 4 ب أ $=$ 5 أ $=$ 6 أما أن أما أن $=$ 6 أما أن $=$ 6 أما أن أن $=$ 6 أما أن أن أن أن أن أن أما أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.17          |  |  |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | السنة                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ب      | إذا كان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 • 1 7                   |
| ج      | $? = \frac{\upsilon'(\tau + \circ\alpha) - \upsilon'(\tau)}{\cdot \cdot \cdot \cdot}$ $! = \frac{\upsilon'(\tau) + \circ\alpha}{\cdot \cdot $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۲۰۱٦<br>إكمال             |
| ٥      | $?=\left(\frac{\pi}{\Upsilon}\right)'$ فإن $\upsilon\left(\varpi\right)=?$ إذا علمت أن $\upsilon\left(\varpi\right)==\Upsilon$ ، فإن $\upsilon\left(\frac{\pi}{\Upsilon}\right)=?$ أ) $\Upsilon$ ب) صفر جـ) $-\pi$ د) غير موجودة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲۰۱٦<br>إكمال             |
| ج      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.17                      |
| د      | ا إذا كان $\upsilon(m) = \left[\frac{1}{m}m + o\right]$ ، فإن $\upsilon$ '\ $\upsilon$ افإن $\upsilon$ '\ $\upsilon$ افغير موجودة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۲۰۱۷<br>الدورة<br>الثانية |
| د      | $?=\frac{(1) \upsilon - (m) - \upsilon (1+a) - \upsilon (1+a)}{(m)}=?$ إذا كان $\upsilon$ ( $\upsilon$ ( $\upsilon$ ) ( $\upsilon$ ) $\upsilon$ ( $\upsilon$ ) $\upsilon$ ( $\upsilon$ ) $\upsilon$ ( $\upsilon$ ) $\upsilon$ ( $\upsilon$ ) ( $\upsilon$ | ۲۰۱۷<br>الدورة<br>الثانية |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | السنة                     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------|
| ţ      | في الاقتران ص = ٠٠ (س) يساوى ٥س هم ٣هـ ٣س<br>= ؟<br>ب) ٣٦ جـ) ٣٠ د) ٢١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | إذا كان التغير<br>فإن ت '(٣)<br>أ) ٥٤         | Y•1A                      |
| ب      | $m{\pi} = m{\pi}^{7} + m{\pi}^{7}$ و کان $m{v}''(1) = 3$ $m{\pi}^{7} + m{\pi}^{7}$ $m{\pi}^{7} + m{\pi}^{7}$ $m{\pi}^{7} + m{\pi}^{7}$ $m{\pi}^{7} + m{\pi}^{7}$ $m{\pi}^{7} + m{\pi}^{7} + m{\pi}^{7}$ $m{\pi}^{7} + m{\pi}^{7} + m{\pi}^{7$ | فإن قيمة الثاب                                | ۲۰۱۸<br>الدورة<br>الثانية |
| د      | ر) ، ه( $m$ ) ، اقترانین قابلین للاشتقاق بحیث أن $Y = (T) = S$ ، ه $Y = (T) = S$ ، فإن $\left(\frac{U}{R}\right)'(T) = S$ . فإن $\left(\frac{U}{R}\right)'(T) = S$ . $Y = (T)$ . $Y = (T)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | ۲۰۱۸<br>الدورة<br>الثانية |
| f      | $? = (1)^{"'}$ فإن $v^{1} = w^{1} + v^{2}$ فإن $v^{2} = w^{2} + v^{2}$ فإن $v^{2} = w^{2} + v^{2}$ في $v^{2} = w^{2}$ في $v^{2} = w^{2} + v^{2}$ في $v^{2} = w^{2}$ في                                                                                                                                                                            | إذا كان نهـــــــــــــــــــــــــــــــــــ | ۲۰۱۸<br>الدورة<br>الثانية |
| ţ      | $egin{aligned} arphi & ar$                                                                                                                                                                                                                                                                                                                                                                                                            | للاشتقاق فما                                  | 7.19                      |
| 5      | انات الآتية يكون قابلا للاشتقاق على ح ؟ $ = [w - Y] \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | أ) ن (س)                                      | 7.19                      |

| الجواب |                                                                 | السؤال                      |                                                                                                                                                                                                       |                      | السنة   |
|--------|-----------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|
|        | ٤=(٢)'ط ، ٦-                                                    | وكان <b>ن</b> (٢)=          | (し) = しゅー(                                                                                                                                                                                            | إذا كان ق(س          | 7.19    |
| ح      |                                                                 |                             | ت <i>ن</i> '(۲)؟                                                                                                                                                                                      | فما قيمة الثاب       | 1 * 1 • |
|        | ) ٥ د) ١١                                                       | ج                           | ب) ۲                                                                                                                                                                                                  | <b>۱</b> ۳ – (أ      |         |
| ٥      | $(1)' oldsymbol{arphi}$ فما قیمة $oldsymbol{arphi}$             | —<br>س کا<br>س <۱> س        | $ \left\{ \begin{array}{c} \left\langle $ | إذا كان 0 (س         | 7.19    |
|        | مفر د) غير موجودة                                               | ج)،                         | <del>،</del><br>ب)                                                                                                                                                                                    | أ) ه                 |         |
|        | ، وكان $oldsymbol{arphi} = oldsymbol{arphi}(oldsymbol{\omega})$ | $^{Y}(\omega\Delta)\omega+$ | $\Delta^{{}^{\scriptscriptstyle ackslash}}$ ص $=$ س $^{{}^{\scriptscriptstyle ackslash}}\Delta^{{}^{\scriptscriptstyle ackslash}}$ س                                                                  | $\Delta$ ا إذا كان ا | 7.19    |
| f      |                                                                 |                             | <b>?</b> = (ξ)                                                                                                                                                                                        | ' فما قيمة <i>U</i>  | الدورة  |
|        | ۲۰(۵ ) ۲۰                                                       | ج)                          | ۸ (ب                                                                                                                                                                                                  | ٲ) ٤                 | الثانية |
|        | تغير الاقتران ٥٥ (س)في                                          | ا، وكان متوسط               | رس) = س ك (س)                                                                                                                                                                                         | إذا كان ت (س         | 7.19    |
| ح      | ، فما قيمة ك (١٠)؟                                              | ۳-=(٣) ط                    | ۲] يساوي -۲،                                                                                                                                                                                          | الفترة [-١٠]         | الدورة  |
|        | ١ د)٢                                                           | جـ)                         | ب) – (ب                                                                                                                                                                                               | <b>۲</b> – (أ        | الثانية |
|        | شتقاق على ح ، بحيث                                              | نرانين قابلين للا           | ر ) <b>، ا</b> ق (س)، اق                                                                                                                                                                              | إذا كان ق(س          | 7.19    |
| د      | )، فما قيمة ك $^{\scriptscriptstyle (i)}($ س $)$ ?              | س)ط-=(س                     | ")'ひぃ(‴)し                                                                                                                                                                                             | ) = (س) = <i>و</i>   | الدورة  |
|        | (س)ط د) كو(س)                                                   | <i>-</i> (ب                 | ب) – 0(س                                                                                                                                                                                              | (m) $v(m)$           | الثانية |
|        | ىا قىمة <i>ئ⁻</i> (٥) ؟                                         | ىس ≠0                       | (س۲+۲                                                                                                                                                                                                 | اذا کان و د (س       | 7.19    |
| د      |                                                                 |                             |                                                                                                                                                                                                       |                      | الدورة  |
|        | ۱ د) غیر موجودة                                                 | جـ) ٠                       | ب)ه                                                                                                                                                                                                   | ۱)صفر                | الثانية |
| f      | فما قيمة <sup>7</sup> (٠,٢) ؟<br>د) غير موجودة                  |                             |                                                                                                                                                                                                       |                      | 7.7.    |

### القسم الثاني: أجب عن الأسئلة التالية:

| الجواب                    | السؤال                                                                                                                    | السنة         |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| ١.                        |                                                                                                                           | ۲۰۰۸          |  |  |
| <del>ر</del> = أ<br>۲ = ب |                                                                                                                           |               |  |  |
| ، س ،<br>، س ،<br>، س ،   | ا فذا کان                                                                                                                 | Y • • A       |  |  |
| ۱ ٥= أ<br>١=ب             | $   \left\{ \begin{array}{ll}                                    $                                                        | 7.17          |  |  |
| ۰ = أ<br>                 | $     \left\{ \begin{array}{ll}                                    $                                                      | ۲۰۱٤<br>إكمال |  |  |
| ١٠-                       | إذا كان $\mathfrak{O}(m) = m^{\ \prime} + 7$ ، ه $(m) =   rac{1}{2}m - 0 $ فأوجد $(\mathfrak{V} 	imes \mathfrak{a})'(1)$ | ۲۰۱۵ إكمال    |  |  |

| الجواب    | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|           | ا إذا كان $\upsilon$ (س) كثير حدود بحيث $\upsilon$ $\upsilon$ (۰) = ۰، $\upsilon$ $\upsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.10    |  |  |  |
| ۱٦-       | س۲اج(س) عق (س)جا۲س                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | الدورة  |  |  |  |
|           | <u> سا کی '(س) جا ۲س</u><br>میر نامی کی است کی است کی است کی است کی است کی است کی کار کار کی کار کار کی کار کار کی کار کار کار کار کار کی کار کار کی کار کار کار کی کار | الثانية |  |  |  |
|           | ωΥ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.17    |  |  |  |
|           | $\frac{\circ}{\circ}$ ا اذا کان $\omega = \emptyset$ ان بنت أن $\omega'' = \frac{\circ}{\circ}$ ان فأثبت أن $\omega'' = \frac{\circ}{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الدورة  |  |  |  |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | الثانية |  |  |  |
|           | إذا كان $\mathcal{D}(\mathcal{D}) = \mathcal{D}(\mathcal{D}) + \mathcal{T}$ ، وكان متوسط التغير للاقتران                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |  |  |
|           | $v(m)$ عندما تتغیرس من ۱ إلى ۱+ه یساوی ه $^{'}+$ ۲ه وکانت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.19    |  |  |  |
| ٣-        | <i>U</i> (۱) = ۱ فأوجد ك '(۱)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |  |  |  |
|           | $\frac{\circ}{\circ}$ الس $\circ$ $+$ $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |  |  |  |
|           | إذا كان $\sigma(m) = \frac{m}{m+1}$ ، وكان الحان $\sigma(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.19    |  |  |  |
| <u>'-</u> | الشكل المجاور يمثل منحني ه (س)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | الدورة  |  |  |  |
| ۲         | أوجد (ن×ه)'(۱)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | الثانية |  |  |  |
|           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | سيس     |  |  |  |

| الجواب                                                                                                                                                                                               | السؤال                                                                                                                                                                |                           |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| ں (س) = س <sup>۲</sup> – ۳ س <sup>۲</sup> + ۳ س                                                                                                                                                      | يمثل الشكل المجاور منحنى $\upsilon$ (س) $\upsilon$ (س) كثير حدود $\upsilon$ (س) من الدرجة الثالثة جد قاعدة الاقتران $\upsilon$ (س) إذا علمت أن منحناه يمر بنقطة الأصل | ۲۰۲۰<br>الدورة<br>الثانية |  |  |
| لیکن $0$ ، ه اقترانین یحققان المعادلتین: $0^{-}(m)+$ ه $(m)=$ ، ه $(m) 0$ $(m)+$ ه $(m)=$ ، ه $(m) 0$ $(m)+$ ه $(m)=$ ، ه وکان کل من $0^{-}(m)=$ ه $(m)=$ ، ه $(m)=$ أثبت أن $0^{-}(m)=$ $0^{-}(m)=$ |                                                                                                                                                                       |                           |  |  |

### الدرس الثالث: مشتقة الاقترانات الدائرية

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|
| ţ      | $=\left(rac{\pi}{\Upsilon} ight)'$ إذا كان $\mathfrak{G}(\mathfrak{w})=$ جالس ، $\mathfrak{a}(\mathfrak{w})=$ ججتالس ، فإن $\mathfrak{G}(\mathfrak{w})=$ إذا كان $\mathfrak{G}(\mathfrak{w})=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۲۰۰۸<br>۲۰۱۱<br>إكمال |  |  |  |
| ţ      | إذا كان ى (س) = جتالاس، فإن ى "(س) + ٥٥ (س) = ؟<br>أ) جتالاس<br>جـ) - ٩ جتالاس<br>د) - حتالاس                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۲۰۱۰                  |  |  |  |
| Î      | إذا كان ص =قاس+ظاس فإن ص =؟<br>أ) قاس ب) قتاس ج_) ـ قاس د) - قتاس<br>أ) قاس ب) قتاس                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.17                  |  |  |  |
| ب      | إذا كانت ص =قتالاس ، فإن تحس =؟  أ) قتالاسطتالاس ب - ۲ قتالاسطتالاس ج - ) - قتالاسطتالاس ج - ) - قتالاسطتالاس ج - ) - قتالاسطتالاس د ) ۲ ظتا ۲ س                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.18                  |  |  |  |
| ج      | $? = \left(\frac{\pi}{7}\right)'$ و نان $(m) = \Rightarrow \sqrt{7}$ ، فإن $\sqrt{7}$ ، فإن $\sqrt{7}$ $= ?$ و الجذا کان $\sqrt{7}$ $= \Rightarrow \sqrt{7}$ رسفر $\sqrt{7}$ الجنا $= \Rightarrow \sqrt{7}$ الجنا $= $ | 7.15                  |  |  |  |
| د      | إذا كان $m=$ ظا $m$ جا $7$ $m$ ، فإن $\frac{z}{z}$ عندما $m=\frac{\pi}{2}$ تساوى $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ حد) $\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y•10                  |  |  |  |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |  |  |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| ب      | إذا كان $ ص = $ $ = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |  |  |  |  |
| ج-     | إذا كانت ص =قا س فإن تحص =؟  أ) ٢ قاسطاس  ب)٢ قاسطاس  ج)٢ قا سطاس  د)٢ ظاس                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲۰۱٦<br>إكمال             |  |  |  |  |
| د      | $     1 = \left(\frac{\pi}{7}\right)'(\omega \circ \omega) $ إذا كان $     0(\omega) = 1 \omega \circ \omega $ ه $     0(\omega) = 1 \omega \circ \omega $ إذا كان $     0(\omega) = 1 \omega \circ \omega $ فإن قيمة الثابت $     1 \circ \omega \circ \omega $ عن $     1 \circ \omega \circ \omega $ د) $     1 \circ \omega \circ \omega $ ا) $     -1 \circ \omega \circ \omega $ د) $     1 \circ \omega \circ \omega $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ۲۰۱۷<br>الدورة<br>الثانية |  |  |  |  |
| د      | إذا كانت ص =ظاسجا ٢س، فإن <u>حس</u> =؟<br>أ) ٢ جتا ٢ س<br>جـ) – ٤ جاسجتا س<br>د) ٢ جا٢ س                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۲۰۱۸<br>الدورة<br>الثانية |  |  |  |  |
| د      | إذا كانت $ ص = $ $ = $ $ اس + $ $ حتاس ، فإن  ص \frac{ z - w }{ z w } =   ?   أ )  ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )   ( 1 )  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲۰۱۸<br>الدورة<br>الثالثة |  |  |  |  |
| ب      | $= \frac{200}{200} = ?$ $= \frac$ | ۲۰۱۹<br>الدورة<br>الثانية |  |  |  |  |

| الجواب | السؤال                                                                                            |                           |  |  |
|--------|---------------------------------------------------------------------------------------------------|---------------------------|--|--|
| ţ      | $ \frac{-1}{1$                                                                                    | ۲۰۲۰<br>الدورة<br>الثانية |  |  |
| د      | إذا كان ق(س)=جا٤س×ظا٢س فما قيمة ٠٠٠ (س) ؟<br>أ) ٤ جتا٤س ب) ٨ جتا٤سقا٢٣<br>جـ ) – ٤ جا٤س د) ٤ جا٤س | ۲۰۲۰<br>الدورة<br>الثانية |  |  |

## القسم الثاني: أجب عن الأسئلة التالية:

| الجواب | السؤال                                                                  |         |  |  |
|--------|-------------------------------------------------------------------------|---------|--|--|
|        | $(1+7)(m+1)$ إذا كانت $m = d^{r}$ ، أثبت أن $\frac{s}{s}$ $\frac{s}{s}$ | ۲۰۰۹    |  |  |
|        | إذا كانت $\omega = 1$ جاس ، أثبت أن $\frac{s}{s}$                       | 7.17    |  |  |
|        | ص ≠ صفر                                                                 | إكمال   |  |  |
|        | إذا كانت ص = جاه ، س = قتاه ، أثبت جس + ٢ ص حص = صفر                    | 7.18    |  |  |
|        | إذا كانت ص = اجماله + بجتاله ، حيث ١٥١٥ أعدادا حقيقية                   | 7.19    |  |  |
|        | $^{\prime}$ أثبت أن $\frac{^{\prime\prime}}{0}$                         | الدورة  |  |  |
|        | $\lambda - = \frac{1}{\omega}$ اتبت آن                                  | الثانية |  |  |

# الدرس الرابع: قاعدة لوبيتال ومشتقة الاقتران الأسي واللوغاريتمي

| الجواب | السؤال                                                                                                       |               |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------|---------------|--|--|--|
|        | إذا كان $\mathfrak{O}(m) = \mathbf{a}^{7} - \mathbf{L}_{0}(\mathbf{Y} + \mathbf{Y})$ ، حيث هـ العدد النيبيري |               |  |  |  |
| ħ      | $?=\left(oldsymbol{\cdot} ight)'$ فإن $oldsymbol{arphi}$                                                     | Y • • V       |  |  |  |
|        | ۱ – (۵ ۲ (۱ – ۲ (۱ ) ۲ (۱ )                                                                                  |               |  |  |  |
|        | ن<br>من جيا (س + هـ ) - جياس<br>هـ                                                                           |               |  |  |  |
| ٥      | ہے. هـ<br>أ) جتاس ب) جاس ج_) -جتاس د) –جاس                                                                   | Y • • V       |  |  |  |
|        | إذا كان ع (س) = ه سلم المور  ٢س + ٢  ، حيث هـ العدد النيبيري                                                 | Y • • V       |  |  |  |
| ب      | فإن ن (۱۰) =؟                                                                                                | دراسات        |  |  |  |
|        | f) ۱ (أ ب ) ۲ جـ ۳ (ب م                                                                                      | السائل السائل |  |  |  |
|        | إذا كان $\mathcal{O}(m) = \mathbf{a}^{T} - \mathbf{L}_{e_{x}}(Tm + T)$ ، حيث هـ العدد النيبيري               |               |  |  |  |
| جـ     | $ ho = (oldsymbol{\cdot})'$ فإن $oldsymbol{\circ}$                                                           | Y • • A       |  |  |  |
|        | اً) ۰ ب) ۲ جـ)۲ د)۳                                                                                          |               |  |  |  |
|        | أوجد نهـــا جتا(٢ســـهـ)-جتا٢س ؟                                                                             | <b>-</b>      |  |  |  |
| ب      | ہے. ہے<br>أ) –۲ جا۲س ب) جا۲س                                                                                 | ۲۰۰۸<br>إكمال |  |  |  |
|        | جـ)۲ جا۲س د)—جا۲س                                                                                            | ÷             |  |  |  |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | السنة         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ب      | ?=(0)' إذا كان $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79            |
| د      | إذا كان $\upsilon$ (س) = ظالاس، فإن نهي $\frac{\upsilon(\pi + \mathbf{a}) - \upsilon(\pi)}{\mathbf{a}}$ = ?  أ)غير موجودة ب) $-$ ٢ جـ) صفر د) ٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۲۰۰۹<br>إكمال |
| ب      | جــــــــــــــــــــــــــــــــــــ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ۲۰۱۰          |
| ب      | (0)' إذا كان $(0)' = (0)' + 1$ ، فإن $(0)' = (0)'$ إذا كان $(0)' = (0)'$ با المال الما              | ۲۰۱۲<br>إكمال |
| Ť      | $(m) = (m)^{\prime}$ اذا کان $(m) = (m)^{\prime} + [m] +$ | 7.17          |
| Î      | ج المس المس المس المس المس المس المس المس                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۲۰۱٤<br>إكمال |

| الجواب | السؤال                                                                                                                                                                         |                           |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| د      |                                                                                                                                                                                | 7.18                      |  |  |  |
| ج      | $?=(7)'$ إذا كان $0$ (س) $=$ ه $^{-7}$ $-$ لو $_{c}$ (س $+$ $3$ ) ، فإن $0$ $^{7}$ $(7) =$ $?$ أ) $7$ ب) ه جا صفر د) $-$ ه                                                     | <b>۲・</b> 1٦              |  |  |  |
| د      | $\mathbf{r} = \left(\frac{\pi}{\mathbf{r}}\right)''$ اذا کان $\mathbf{v}$ (س) $= \mathbf{a}^{-1}$ ، فإن $\mathbf{v}$ أ) $\mathbf{a}$ ب) صفر $\mathbf{r} = -1$ د) $-\mathbf{a}$ | ۲۰۱٦<br>إكمال             |  |  |  |
| ب      | $ ho$ إذا كان $\sigma(m) = a^{7-c} + \Lambda$ لو $(m+o)$ ، فإن $\sigma'(m) = ?$ أ) $- Y$ ب) صفر جا $\frac{9}{\Lambda}$ د) $Y$                                                  | 7.17                      |  |  |  |
| ج      | إذا كان                                                                                                                                                                        | ۲۰۱۷<br>الدورة<br>الثانية |  |  |  |
| f      | إذا كان $v(m) = 0$ لو $(m+0) - a^n$ ، فإن $v(n) = ?$ أ) صفر $v(n) = 0$ د) ٢                                                                                                    | Y•1A                      |  |  |  |
| د      | ما قيمة نها الم الم الم الم الم الم الم الم الم ال                                                                                                                             | 7.19                      |  |  |  |

| الجواب   | السؤال                         |                          |                                                                |                                                                                          | السنة             |
|----------|--------------------------------|--------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------|
| _        |                                |                          | ،+ظاس<br>جاس                                                   | ما قيمة نها <del>س</del>                                                                 | 7.19              |
| <u>ج</u> | د)٤                            | جـ)٢                     | ب)١                                                            |                                                                                          | صناعی             |
| د        | ē                              | ض<br>س عندما س= ۲ '<br>س | s<br><del>- و</del> س ` ، ما قيمة<br>s                         | إذا كان ص =                                                                              | 7.19              |
| Č        | د)٣                            | جـ)٢                     | <del>ر</del> (ب                                                |                                                                                          | صناعی             |
|          |                                |                          | <u>. و س</u> ؟                                                 | ما قيمة نهي                                                                              | 7.19              |
| Ĭ        | د)٤                            | جـ)٢                     |                                                                | ~ ·~ · · · · · · · · · · · · · · · · ·                                                   | الدورة<br>الثانية |
| ب        | د)١                            | ج_)-١                    | $\frac{1 - w - w}{w}$ ج $\frac{1}{2}$ ب                        | $\frac{2}{\alpha}$ ما قیمة نہے۔ $\frac{2}{\alpha}$ $\frac{2}{\alpha}$ $\frac{2}{\gamma}$ | 7.7.              |
| ţ        | و <u>ص</u><br>وس س=ه<br>د) ۳   |                          | ، 'لـو <sub>ه</sub> س ، حيث '<br>ب) <del>\</del> ه             |                                                                                          | ۲۰۲۰              |
| ج        |                                |                          | ۔ ''وکان صُّ + <b>۳'</b><br>ب) -۲ ، ه                          |                                                                                          | ۲۰۲۰              |
|          | <b>٦</b> − = (1−) <sup>×</sup> |                          | اقتراناً يمر بالنقطة<br>(س '+ ٢س - ١) - د                      |                                                                                          | ۲۰۲۰              |
| ب        |                                |                          | (س <sup>۲</sup> + ۲س – ۱) – <del>و</del><br>س <sup>۲</sup> – ٤ |                                                                                          |                   |
|          | د) غير موجودة                  | ج) ۲                     | ٣-(ب                                                           | ) ()                                                                                     | الثانية           |

| الجواب | السؤال          |                      |                                |                 |         |
|--------|-----------------|----------------------|--------------------------------|-----------------|---------|
|        |                 | $\pi$ جا $+$ (خاس+۲) | ) = ه <sup>جا۲س</sup> + لــو ه | إذا كان 🕫 (س)   | 7.7.    |
| ĺ      |                 |                      | ? (                            | فما قيمة ٠) (٠) | الدورة  |
|        | د) <del>۲</del> | <u>ب ۲</u> (ج        | <del>٣</del> (ب                | <del>0</del> (1 | الثانية |

### القسم الثاني: أجب عن الأسئلة التالية:

| الجواب                                      | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |  |  |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
|                                             | بین أن الاقتران $ص = (1 + 7 m)$ ه $^{""}$ یحقق المعادلة $\frac{5}{2} \sqrt{1 + 1} + \frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} + \frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران $\frac{5}{2} \sqrt{1 + 1} = 0$ بین أن الاقتران أن الاق |               |  |  |
| +٤سه س <sup>٢</sup> لـو س                   | $\frac{\gamma_{a}}{m}$ $\frac{\delta_{a}}{m}$ $\frac{\delta_{a}}{\delta_{a}}$ $\frac{\delta_{a}}{\delta_{a}}$ $\frac{\delta_{a}}{\delta_{a}}$ $\frac{\delta_{a}}{\delta_{a}}$ $\frac{\delta_{a}}{\delta_{a}}$ $\frac{\delta_{a}}{\delta_{a}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲۰۱۱<br>إكمال |  |  |
| <b>ξ</b> -π                                 | $\frac{\xi - \Upsilon w + w\pi}{+ \pi}$ أو جد $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |  |  |
| <u>7a – 1</u><br>7                          | $\left(\frac{\mathbf{a}}{\mathbf{v}}, \mathbf{v}\right)$ أو جد $\frac{\mathbf{z}}{\mathbf{z}}$ عند النقطة $\left(\mathbf{v}, \frac{\mathbf{a}}{\mathbf{v}}\right)$ أو جد $\frac{\mathbf{z}}{\mathbf{z}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |  |
| $r = -\frac{2}{\pi}$ ب $r = -\frac{2}{\pi}$ | إذا كانت $ن \longrightarrow \frac{100^7 + 7 ب + 7 + 100}{100} = 1$ ، جد الثابتين $1$ ، ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |  |  |
| <u>'</u> –                                  | إذا كان $b(m) = 1 + $ لوه $\sqrt{m}$ $> m > 0$ أوجد $\int_{m \to 1} \left(\frac{b(m)}{m}\right) \left(1 - \frac{1}{m}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |  |  |

#### الدرس الخامس: تطبيقات هندسية وفيزيائية

| الجواب | السؤال                                                                                                   |               |  |  |
|--------|----------------------------------------------------------------------------------------------------------|---------------|--|--|
| ب      | إذا كان ميل المماس =-٢، فإن ميل العمودي عليه يساوي :                                                     | 7٧            |  |  |
| ,      | $\frac{1}{7} - (2) \qquad 7 - (-2) \qquad \frac{1}{7} (-1) \qquad 7 (1)$                                 | دراسات        |  |  |
|        | إذا تحرك جسم على خط مستقيم وفق العلاقة ف $ u = v - v$ ، فإن                                              | 7             |  |  |
| ج      | سرعة هذا الجسم وتسارعه يتساويان عددياً عندما :                                                           | دراسات        |  |  |
|        | أ) $N=N$ ب $N=N$ ب $N=N$ أ) $N=N$ أ) $N=N$ أ                                                             | ۲۰۱٤<br>إكمال |  |  |
|        | إذا كانت معادلة العمودي على منحني ق (س) عند النقطة (٣،٠)هي                                               |               |  |  |
| ج      | $\gamma = \gamma = \gamma$ ، فإن $\gamma'$ ، ناوي :                                                      | 7٧            |  |  |
|        | $\frac{7-}{7}$ (ع $\frac{7-}{7}$ (ج $\frac{7}{7}$ (ن $\frac{7}{7}$ (أ                                    | إكمال         |  |  |
|        | يتحرك جسم وفق العلاقة ٤ = ٦ الن ، حيث ٤ ، ف هما السرعة                                                   |               |  |  |
| ج      | والإزاحة على الترتيب ، فإن تسارع هذا الجسم يساوي :                                                       | ۲۰۰۸          |  |  |
|        | أ) ٦ (ب ١٢ جـ) ١٨                                                                                        |               |  |  |
|        | إذا كانت معادلة العمودي على المماس لمنحني ق (س) عند النقطة                                               |               |  |  |
| د      | : فإن ${\cal U}'$ تساوي ${\cal T}$ هي ${\cal T}$ ${\cal T}$ ${\cal T}$ ، فإن ${\cal U}$ ${\cal T}$ تساوي | 7 • • ٨       |  |  |
|        | $\frac{\pi}{7}$ () $\frac{7}{\pi}$ $\Rightarrow$ $\frac{\pi}{7}$ ( $\frac{7}{\pi}$ ()                    |               |  |  |

| الجواب | السؤال                                                                                          | السنة    |
|--------|-------------------------------------------------------------------------------------------------|----------|
| ج      | إذا كان المستقيم $\omega = \omega$ مماساً لمنحنى $\omega = \omega^{\prime} + 1$ ، فإن قيمة أ    | ۲۰۰۸     |
|        | <b>?</b> =                                                                                      | إكمال    |
|        | روب بروب بروب بروب بروب بروب بروب بروب                                                          |          |
|        |                                                                                                 |          |
| د      | النقطة (۲۰۱) هي $\omega=rac{1}{h}$ س، فإن $\upsilon$ $(1)$ تساوي:                              | 79       |
|        | $\frac{1}{\pi} - (2) \qquad \frac{1}{\pi} (\Rightarrow \qquad \pi - (1) $                       |          |
|        | تحرك جسم على خط مستقيم وفق العلاقة ف $ u = v - v$ ، فإن                                         |          |
| د      | سرعة هذا الجسم وتسارعه يتساويان عددياً عندما ن تساوي:                                           | 79       |
|        | أ) صفر                                                                                          |          |
|        | إذا كان المستقيم $\omega = \omega$ ، مماسا لمنحنى الاقتران $\omega = = $                        | ۲۰۱۰     |
| ب      | $\pi \in [\pi "]$ فإن الإحداثي السيني لنقطة التماس هو :                                         |          |
|        | $\frac{\pi}{\Upsilon}$ (ع $\frac{\pi}{\Upsilon}$ (ج $\frac{\pi}{\chi}$ (ب $\frac{\pi}{\chi}$ (أ | إكمال    |
|        | إذا كانت معادلة العمودي على المماس لمنحني الاقتران ق (س)عند                                     |          |
| ب      | النقطة (۲ ا،، $)$ هي أ $ = س ، وكانت  \mathcal{U} '(17) = 7 $                                   | 7.11     |
|        | فإن قيمة الثابت ب هي :                                                                          |          |
|        | اً)-۲ ب ۲ ب)۲ د)۲                                                                               |          |
| ج      | إذا كانت معادلة العمودي على منحني الاقتران ق (س)عند النقطة                                      | <b>Y</b> |
|        | (۲۰۱) الواقعة عليه هي $m+7$ $m=0$ ، فإن $v$                                                     | 7.11     |
|        | $7-(2)$ $7(\Rightarrow \frac{1}{7}-(1)$                                                         | إكمال    |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                       |               |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| ب      | إذا تحرك جسم وفق العلاقة ف $(\omega) = \omega^{\dagger} + \Upsilon \omega$ ، ف بالأمتار ، $\omega$ بالثواني ، فإن التسارع المتوسط للجسم في الثواني الثلاث الأولى يساوي :                                                                                                                                     |               |  |  |
| ج-     | إذا كانت معادلة العمودي على المماس لمنحنى الاقتران $v$ (س) عند النقطة (١٠-٢) هي $v$ + $v$ فإن $v$ (١) = ? النقطة (١٠-٢) هي $v$ ب $v$ (١) = ? أ) - $v$ ب $v$ (١) = ?                                                                                                                                          | ۲۰۱۲<br>إكمال |  |  |
| ٥      | إذا تحرك جسيم على خط مستقيم بحيث كانت ف( $\nu$ ) تمثل إزاحته عند زمن $\nu$ ، فإن سرعته اللحظية =? $\frac{\varepsilon \Delta}{\nu}$ د) $\frac{\varepsilon}{\nu}$ د) $\frac{\varepsilon}{\nu}$ د) $\frac{\varepsilon}{\nu}$                                                                                    | ۲۰۱۳ إكمال    |  |  |
| ج-     | إذا كانت معادلة العمودي على منحنى الاقتران $\sigma$ (س) عند النقطة إذا كانت معادلة العمودي على منحنى الاقتران $\sigma$ (ص) = ?  (260) الواقعة عليه هي $\sigma$ $\sigma$ $\sigma$ $\sigma$ $\sigma$ الواقعة عليه هي $\sigma$ | 7.18          |  |  |
| ج-     | إذا كان المستقيم                                                                                                                                                                                                                                                                                             | ۲۰۱٤<br>إكمال |  |  |
| f      | إذا كانت معادلة العمودي على المماس لمنحنى $\sigma$ (س) عند النقطة إذا كانت معادلة العمودي على المماس لمنحنى $\tau$ ( $\tau$ ) = ? ( $\tau$ ) هي $\tau$                                                                                        | Y•10          |  |  |

| الجواب | السؤال                                                                                                                                                          | السنة  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|        | إذا كانت معادلة العمودي على المماس لمنحني ق (س)عند النقطة                                                                                                       | 7.10   |
| f      | $(\mathfrak{T})$ هي کا $\mathfrak{T}-\mathfrak{T}$ $\mathfrak{T}=\mathfrak{P}$ ، فإن قيمة $\mathfrak{T}'(\mathfrak{T})+\mathfrak{T}(\mathfrak{T})=\mathfrak{P}$ | إكمال  |
|        | $\frac{V}{\pi}$ (2) $\frac{V}{\xi}$ ( $\frac{V}{\xi}$ ( $\frac{V}{\xi}$ ( $\frac{V}{\xi}$ ( $\frac{V}{\xi}$ ( $\frac{V}{\xi}$ )                                 |        |
|        | إذا كان ميل العمودي على المماس لمنحني ق (س)عند النقطة                                                                                                           |        |
|        | الواقعة عليه تساوى $\frac{1}{7}$ ، فإن معادلة المماس لمنحنى $(7-6)$                                                                                             |        |
| ţ      | ں (س) عند تلك النقطة :                                                                                                                                          | 7.17   |
| ,      | $0-m$ اً) $\omega = -7$ س $-1$ ب $\omega = 7$                                                                                                                   |        |
|        | -7س = $-7$ س (ع $-$ د) ص = $-7$ س + ا                                                                                                                           |        |
|        | قذف جسم رأسياً إلى أعلى بحيث يقاس ارتفاعه حسب العلاقة                                                                                                           |        |
| ţ      | ف $(v)$ $=$ $3$ أ $v$ $ 7$ $v$ $^{'}$ ، أ $>$ $^{'}$ إذا كان أقصى ارتفاع وصله الجسم                                                                             | 7.17   |
| ·      | ٣٢ متراً ، فإن قيمة أهي :                                                                                                                                       |        |
|        | أ) ٤                                                                                                                                                            |        |
|        | ليكن ق (س) =  ٣س - ٥  ، فإن ميل العمودي على المماس لمنحني                                                                                                       | 7.17   |
| ب      | <i>ۍ (س) عند س = ۲ هو</i> :                                                                                                                                     | إكمال  |
|        | $\gamma$ ا) $-\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$                                                          | ۽ ڪندن |
|        | إذا كان ص=١-٥س، مماساً لمنحني الاقتران ق (س)عند النقطة                                                                                                          |        |
| f      | $(\gamma - \rho)$ ، فإن $\gamma = \frac{\sigma(\gamma + \gamma a) + \rho}{a} = \gamma$                                                                          | 7.17   |
|        | أ)- ١٥                                                                                                                                                          |        |

| الجواب | السؤال                                                                                                                                       |                 |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| f      | يتحرك جسيم في خط مستقيم مبتدئاً من النقطة (و) بحيث يكون بعده عنها في أي لحظة بالعلاقة ف $\Lambda = 0$                                        |                 |  |  |
|        | عندما يغير من اتجاه حركته يساوي :                                                                                                            | 7.17            |  |  |
|        | أ) - ۱٦ م / ث ب ) ١٦ م / ث ج ) - ۸۰ م / ث د) - ٣٢ م / ث                                                                                      | <b>Y.</b> \ \ \ |  |  |
| ÷      | إذا كان المستقيم ص = ٥س + ب ، مماساً لمنحنى الاقتران                                                                                         | 7.17            |  |  |
| 1      | $\mathcal{U}(m) = 1$ س ٔ $+$ س $-$ ۱ ، فإن قيمة $m$ هي:                                                                                      | الدورة          |  |  |
|        | اً)-۳ ب)-۱ جـ)۱ د)۳                                                                                                                          | الثانية         |  |  |
|        | قذف جسم رأسياً للأعلى من نقطة (و) على سطح الأرض، فإذا كان                                                                                    | 7.17            |  |  |
| ب      | ارتفاعه ف بالأمتار بعد ن ثانية يعطي بالعلاقة ف $(\omega)=0$                                                                                  | الدورة          |  |  |
| *      | فإن أقصى ارتفاع يصل إليه الجسم يساوي بالأمتار ؟                                                                                              | الثانية         |  |  |
|        | أ) ۶۰ ب ع ۱۰ ( ج د) ۸۰ د                                                                                                                     | ٠٠٠٠            |  |  |
|        | إذا كان المستقيم $oldsymbol{\omega} - oldsymbol{\Upsilon} - oldsymbol{\omega} = oldsymbol{\cdot}$ مماساً لمنحنى الاقتران $oldsymbol{\omega}$ |                 |  |  |
| ب      | $?=rac{arphi(1) arphi)}$ عند النقطة $(1) arphi(1))$ ، فإن نهيد مند النقطة $(1) arphi(1)$                                                    | 7.11            |  |  |
|        | أ) ۲۰ ب) ۱۰ جـ)٠                                                                                                                             |                 |  |  |
| د      | قذف جسم رأسياً للأعلى من نقطة (و) على سطح الأرض، فإذا كان                                                                                    |                 |  |  |
|        | $^{'}$ ارتفاعه ف بالأمتار بعد ن ثانية يعطي بالعلاقة ف $(N)$ $=$ $N$                                                                          | Y•1A            |  |  |
|        | فإن زمن وصول الجسم لأقصى ارتفاع يساوى:                                                                                                       |                 |  |  |
|        | أ) ٥ ثانية ب) ٤ ثانية جـ) ٣,٥ ثانية                                                                                                          |                 |  |  |

| الجواب   | السؤال                                                                                                     |                           |  |  |
|----------|------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| ħ        | إذا كانت معادلة العمودي على المماس لمنحني ق (س)عند النقطة                                                  | 7.11                      |  |  |
|          | $(Y)$ هی $Y$ $\omega + \Upsilon$ $\omega = Y$ ، فإن قیمة $(Y) - (Y) = ?$                                   |                           |  |  |
|          | $\frac{\gamma}{r} (z) \qquad \frac{\gamma}{r} (z) \qquad \frac{\gamma}{r} (z) \qquad \frac{\gamma}{r} (z)$ | الثانية                   |  |  |
|          | إذا كانت معادلة المماس لمنحني ق (س)عند النقطة (٤٠٠) هي                                                     | 7.17                      |  |  |
| ح        | $? = \frac{\xi - (w)}{w}$ جن فإن نهيد $\lambda - w = \lambda - w = \gamma$                                 | الدورة                    |  |  |
|          | $\frac{1}{\pi}$ (د) $\pi$ (خ) $\pi$ (ا                                                                     | الثالثة                   |  |  |
|          | إذا كان المماس لمنحنى الاقتران $\sigma$ (س) $=$ س $^{\scriptscriptstyle +}$ $+$ س عند                      |                           |  |  |
|          | س = س, يصنع مع محور السينات الموجب زاوية قياسها ٤٥° فما                                                    | 7.19                      |  |  |
| <u>ج</u> | احداثيي نقطة التماس ؟                                                                                      | صناعي                     |  |  |
|          | اً)(۲۰۱) ب)(۲۰۱) جـ)(-۲۰-۲) د)(-۲۰-۱)                                                                      |                           |  |  |
|          | إذا كان ع (س) = ه " فما معادلة المماس لمنحني الاقتران                                                      | 7.19                      |  |  |
|          | ى (س)عندما س = −۱ ؟                                                                                        |                           |  |  |
| <u>ج</u> | أ) <i>ص</i> = – ٢هـ س – ٣هـ ب ب ص = – ٢هـ س + هـ                                                           | ال <i>دو</i> رة<br>الثانة |  |  |
|          | ج) <i>ص</i> = –۲هـ <i>س</i> – هـ                                                                           | الثانية                   |  |  |
| د        | إذا كان المستقيم $\omega=rac{9}{7}-rac{7}{7}$ س عمودياً على منحنى                                        |                           |  |  |
|          | $v(\omega)=\psi$ کی $v=0$ عند $w=1$ فما قیمة $\psi$                                                        | ۲۰۲۰                      |  |  |
|          | $\gamma$ د) $\gamma$ جا $\gamma$ د) $\gamma$                                                               |                           |  |  |

| الجواب | السؤال       |                                                                            |                            |               | السنة   |
|--------|--------------|----------------------------------------------------------------------------|----------------------------|---------------|---------|
|        |              | فاعه ف بالأقدام بع                                                         |                            |               |         |
| †      | يحتاجه الجسم | <ul> <li><sup>۲</sup> فما الزمن الذي</li> <li>عة التي قذف بها ؟</li> </ul> | = 7  PV - 7  V             | uبالمعادلة ف  | 7.7.    |
| ,      |              | عة التي قذف بها ؟                                                          | ن سرعته $\frac{1}{7}$ السر | وهو صاعد لتكو | 1 • 1 • |
|        | د) ٣         | ج_) ۳                                                                      | ب) ۱                       | ۲ (۱ٔ         |         |

| الجواب         | السؤال                                                                                                                                                                                          | السنة         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ع = ٤<br>ت = ٨ | يتحرك جسيم في خط مستقيم حسب العلاقة ف = $\sim - \sim \sim \sim + \sim $                                                        | 7٧            |
|                | يتحرك جسيم في خط مستقيم وفق العلاقة ف $(\omega) = \omega^{-1} - \omega^{-1} + 0$ حيث                                                                                                            | 7             |
| ١٣٣            | ف المسافة بالأمتار ، له الزمن بالثواني ، أوجد سرعة الجسيم عندما يكون تسارعه ٤٠ م / ث٠.                                                                                                          | دراسات        |
| ص = - بيس + با | أو جد معادلة المماس لمنحنى الاقتران $v\left( w ight) = rac{1}{w}$ ، من النقطة $\left( 16.6 ight)$                                                                                              | 7٧            |
|                | الواقعة خارجه، س > ١                                                                                                                                                                            | دراسات        |
| ١٠-            | من قمة برج يرتفع عن سطح الأرض ٢٠م، أطلق جسم رأسياً إلى أعلى فكانت إزاحته ف بالأمتار عن قمة البرج بعد له ثانية تعطى بالقاعدة                                                                     | ۲۰۰۷<br>إكمال |
|                | ف = ١ ١٧٨ – ٥٧٥ خد سرعة الجسم بعد ثانيتين                                                                                                                                                       |               |
| ص = ځس – ځ     | بين وجود مماسين من النقطة (٠٤١) للاقتران ۖ (س) = س ، ثم جد                                                                                                                                      | 7             |
| ∞ = ۰          | معادلتيهما                                                                                                                                                                                      | إكمال         |
| ۲ ، – ۱۰       | إذا كان المستقيم الواصل بين النقطتين $(-1-1)$ ، $(-1-1)$ ، مماساً لمنحنى الاقتران $(-1-1)$ $(-1-1)$ . جد قيمة الثابت ب                                                                          | ۲۰۰۸          |
| ۲۱۳۰<br>۲۱۲۰   | قذف جسم رأسياً للأعلى فكانت العلاقة بين ارتفاعه (ف) بالأمتار عن<br>نقطة قذفه وزمن حركته (م) هي ف = ٠٥٠٠ – ٥٠٠ خد أقصى ارتفاع<br>يصل إليه الجسم والمسافة التي قطعها الجسم في الثواني الست الأولى | ۲۰۰۸          |

| الجواب                         | السؤال                                                                                                                    | السنة |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------|
| ع = ۲۲                         | يتحرك جسم في خط مستقيم تبعاً للعلاقة ف $ u = v^{"} + 3v^{"} $ ، حيث ف $ u = v^{"} $                                       | ۲۰۰۸  |
| ت = ۱۸                         | إزاحة الجسم بالأمتار عن نقطة ثابتة (و) على خط الحركة ، ( ٧) الزمن بالثواني                                                | إكمال |
|                                | جد السرعة المتوسطة والتسارع المتوسط لهذا الجسم في الفترة الزمنية                                                          |       |
| ۲ ، - ۲                        | جد الميل لجميع المماسات المرسومة لمنحنى الاقتران $v(w) = w$                                                               | 79    |
|                                | من النقطة (٢٠-٣) .                                                                                                        |       |
| ٨                              | إذا كان المستقيم $oldsymbol{\omega} = oldsymbol{\omega} + oldsymbol{\xi}$ ، مماساً لمنحنى ل $(oldsymbol{\omega})$ عندما س | 79    |
|                                | $U(\omega) = (\omega \times U(\omega))$ $\Rightarrow U(\omega)$                                                           | إكمال |
|                                | قذف جسم رأسياً لأعلى فكانت العلاقة بين ارتفاعه ف بالأمتار عن نقطة قذفه                                                    |       |
| ۲ث                             | وزمن حركته $ $                                                                                                            | ۲۰۱۰  |
|                                | جد الزمن اللازم لتكون المسافة التي قطعها الجسم تساوي ١٣٠ م                                                                |       |
|                                | إذا كان ك $(m) = (\mathfrak{v}(m) + (m)) \times \mathfrak{a}(m)$ إذا كان ك $(m) = (\mathfrak{v}(m) + (m))$ علماً بأن      | ۲٠١٠  |
| ٤                              | للمنحنيين ق (س) ، هـ (س) مماساً أفقياً مشتركاً عند النقطة (٤٤٣) الواقعة                                                   | إكمال |
|                                | على كليهما .                                                                                                              | ۽ ج   |
|                                | أطلق جسم رأسياً للأعلى من قمة برج بحيث أن ارتفاعه بالأمتار عن سطح                                                         |       |
| 7.8                            | $^{'}$ الأرض بعد $\omega$ ثانية يعطى بالقاعدة $\omega=2++2$                                                               | 7.11  |
|                                | جد أقصى ارتفاع عن قمة البرج يصل إليه الجسم.                                                                               |       |
| ۳ <del>۳</del>                 | جد معادلة المماس لمنحنى الاقتران $v\left( w ight) = rac{1}{7}$ جتا $V$ $w+$ جتا $v$                                      | 7.11  |
| $\cdot = \frac{1}{7} - \omega$ | $\left[rac{\pi}{7}, rac{\pi}{7} -  ight]$ النقطة / النقاط التي يكون عندها المماس أفقيا في الفترة                        | , , , |

| الجواب       | السؤال                                                                                   |       |  |  |  |
|--------------|------------------------------------------------------------------------------------------|-------|--|--|--|
|              | قذف جسمان معاً رأسياً لأعلى، الأول يتحرك وفق العلاقة                                     |       |  |  |  |
| صفر          | ف=٢٠٠٠ والثاني وفق العلاقة ف=١٠٠ -٥١٠ حيث ف                                              | 7.11  |  |  |  |
|              | بالأمتار ، ٧ بالثواني، أوجد ارتفاع الجسم الثاني عندما يصل الأول                          | إكمال |  |  |  |
|              | أقصى ارتفاع له .                                                                         |       |  |  |  |
|              | قذف جسم رأسياً للأعلى من نقطة على سطح الأرض وكان ارتفاعه                                 |       |  |  |  |
| ۱۸(۱م        | يعطى بالعلاقة ف = ٢ ٧١٨ - ٧١٨ ، ف بالأمتار ، به بالثواني جد:                             | 7.17  |  |  |  |
| ۲) ۲ م/ ث    | ١) أقصى ارتفاع يصل إليه الجسم                                                            | إكمال |  |  |  |
|              | ٢) السرعة المتوسطة للجسم في [١٠٢]                                                        |       |  |  |  |
| ۱۲۵(۱        | قذف جسيم رأسياً إلى أعلى وفقاً للعلاقة ف $- \circ \circ - \circ \circ $ ، حيث ف          |       |  |  |  |
| ر،<br>در، (۲ | المسافة بالأمتار ، ن الزمن بالثواني جد                                                   | 7.14  |  |  |  |
| / ث /        | ١) أقصى ارتفاع يصل إليه الجسيم .                                                         |       |  |  |  |
| _ ,          | ٢) التسارع المتوسط للجسيم في الفترة الزمنية [٣٤١]                                        |       |  |  |  |
|              | جد معادلة المماس المرسوم لمنحنى الاقتران $v(m) = m$ ، من                                 | 7.17  |  |  |  |
| ص = پس – ب   | النقطة (٠٠-٤) الواقعة خارج المنحني علماً بأن س٠>٠                                        |       |  |  |  |
|              | قذف جسم رأسياً إلى أعلى بحيث أن ارتفاعه عن نقطة القذف معطى                               |       |  |  |  |
| ۱) ۲۰۲م      | $^{\prime\prime}$ بالعلاقة ف $=$ ۱۲۸ م $=$ ۱ $^{\prime\prime}$ ، حيث ف الارتفاع بالأمتار |       |  |  |  |
|              | الزمن بالثواني جد:                                                                       | 7.18  |  |  |  |
| ۲) – ۳۲ م/ ث | ١) أقصى ارتفاع يصل إليه الجسم                                                            |       |  |  |  |
|              | ٢) سرعة الجسم عندما يكون قد قطع مسافة ٢٧٢ م                                              |       |  |  |  |

| الجواب                  | السؤال                                                                                                                                                                                                                                                           |      |  |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|
| اً= ٣، ب= ٥             | إذا كان $\sigma(m) = 1$ $m + \frac{v}{m}$ ، $m \neq c$ صفر، وكان متوسط التغير للاقتران $\sigma(m)$ في الفترة [١٥٥] هو $\tau$ وكانت $\tau$ $\sigma$                              |      |  |  |  |
| ۱) ۱ ث،۲ ث<br>۲) ۲۰, ۲۵ | من قمة برج يرتفع عن سطح الأرض ٥٠ م أطلق جسم رأسياً إلى أعلى فكانت إزاحته ف بالأمتار عن قمة البرج بعد ن ثانية تعطى بالعلاقة ف $= 0.00$ $\sim 0.0$ جد:  1) الزمن اللازم ليكون الجسم على ارتفاع ٢٠ م من سطح الأرض $\sim 0.00$ أقصى ارتفاع عن الأرض يصل إليه الجسم . |      |  |  |  |
| ص = ٥س - ٤              | أوجد معادلة المماس لمنحنى الاقتران $v(m) = m^+ + m$ والذي يوازى المستقيم $v(m) = m^+ + m$                                                                                                                                                                        | 7.10 |  |  |  |
| ٥                       | إذا كان ت (س) ، ه '(س) اقترانين<br>قابلين للاشتقاق بحيث<br>ت (س) ×ه'(س) = ۲۰<br>بالاعتماد على الشكل المجاور<br>أوجد قيمة ه"(1)                                                                                                                                   | Y•10 |  |  |  |

| الجواب                                             | السؤال  |                                                                                                  |         |  |  |
|----------------------------------------------------|---------|--------------------------------------------------------------------------------------------------|---------|--|--|
|                                                    | لاقة    | قذف جسم رأسياً إلى أعلى من نقطة على سطح أرض أفقية حسب العا                                       |         |  |  |
| 7 (                                                | لثواني  | ف $(\omega)=3$ $7$ $1$ ، حيث ف المسافة بالأمتار ، $\omega$ الزمن با                              | 7.10    |  |  |
| 78                                                 |         | ١) ما أقصى ارتفاع يصل إليه الجسم .                                                               | إكمال   |  |  |
|                                                    | تفاع ۶۸ | <ul> <li>٢) بين أن الجسم يفقد نصف سرعته الابتدائية عندما يكون على ارت</li> </ul>                 |         |  |  |
|                                                    | (9-     | یتحرك جسیم في خط مستقیم حسب العلاقة ف $(N) = N'(YN -$                                            |         |  |  |
| ۱) صفر                                             |         | حيث ف إزاحة الجسم بالامتار ، ٧ الزمن بالثواني                                                    | 7.17    |  |  |
| 1,0 (٢                                             |         | ١) جد السرعة بعد ٣ ثواني من بدء الحركة                                                           | إكمال   |  |  |
|                                                    |         | ٢) متى تبدأ سرعة الجسم بالتزايد ؟                                                                |         |  |  |
|                                                    |         | رسم مماس وعمودي على المماس لمنحني الاقتران                                                       |         |  |  |
| 70,0                                               | ر       | v(m) = w' + 1عند النقطة $v(m) = v'$ الواقعة عليه ، فقطعا محو                                     | 7.17    |  |  |
|                                                    |         | السينات في أ، ب ، أو جد طول القطعة أ ب                                                           |         |  |  |
| ., .                                               |         | أوجد معادلة العمودي على المماس لمنحني الاقتران                                                   | 7.17    |  |  |
| $\frac{1}{\circ} + \omega \frac{\pi - \pi}{\circ}$ | - = ص   | $     \nabla \left( \omega \right) = \sqrt{\omega^{\dagger} + \lambda \omega} $ عند $\omega = 1$ | الدورة  |  |  |
|                                                    |         |                                                                                                  | الثانية |  |  |
| ۱۲م/ ث                                             |         | يتحرك جسم حسب العلاقة ف $ u = v$ ، حيث ف تمثل المسافة                                            | 7.17    |  |  |
|                                                    |         | بالأمتار به الزمن بالثواني ، فإذا كانت سرعة الجسم بعد ٦ ثواني                                    | الدورة  |  |  |
|                                                    |         | تساوي ٤ أمثال سرعته بعد ٣ ثواني ، فأوجد تسارع الجسيم بعد                                         | الثانية |  |  |
|                                                    |         | ثانيتين من بدء الحركة .                                                                          |         |  |  |

| الجواب                                     | السؤال                                                                                                                                | السنة   |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|
|                                            | إذا كان هـ $(7m-1)=rac{\sigma(m)}{m^{"}+1}$ ، وكانت معادلة المماس لمنحنى                                                             | 7.17    |
| <u> </u>                                   |                                                                                                                                       | الدورة  |
| ,                                          | الاقتران $U(m)$ عندما $m=1$ هي $Y$ $m-3$ $m+\lambda=0$ جد ه $(1)$                                                                     | الثانية |
|                                            | قذف جسم رأسياً إلى أعلى ، فكان ارتفاعه عن نقطة قذفه يعطى بالعلاقة                                                                     |         |
| ٥٠=١١ (١                                   | $\omega = 1$ ه $    -$ حيث ف المسافة بالأمتار ، $\omega$ الزمن بالثواني                                                               |         |
| o • = (Y                                   | وكان أقصى ارتفاع يصله الجسم هو ١٢٥م جد                                                                                                | Y•1A    |
|                                            | ١) قيمة الثابت ا                                                                                                                      |         |
| ۳)= ۱۳۰ م                                  | ٢) السرعة الابتدائية للجسم                                                                                                            |         |
|                                            | ٣) المسافة المقطوعة في الست ثوان الأولى                                                                                               |         |
|                                            | إذا كان $\mathfrak{G}(m) = \frac{m'+\mathfrak{p}}{m}$ ى $\mathfrak{f}(m)$ أوجد معادلة المماس المرسوم                                  |         |
| $\sim + \lambda - \omega \lambda + \omega$ | لمنحنى $v(m)$ والذي يوازي المستقيم المار بالنقطتين                                                                                    | Y•1A    |
|                                            | (٤٥١) ( (٤ – ٤٢)                                                                                                                      |         |
|                                            | قذف جسم رأسياً إلى أعلى ، فكان ارتفاعه عن سطح الأرض في أي لحظة                                                                        |         |
| ۱)٠٠٥م                                     | يعطى ف $- \cdot \cdot \cdot \cdot - \circ $ ، حيث ف المسافة بالأمتار، $\cdot \cdot \cdot$ الزمن                                       |         |
| ۱۱(۲ ثانیة                                 | بالثواني <b>جد</b> :                                                                                                                  | Y•1A    |
| (0,-,0,(4                                  | ١) أقصى ارتفاع يصله الجسم .                                                                                                           | الدورة  |
| ′ ث                                        | ٢) الزمن اللازم لتكون سرع الجسم تساوي تسارعه عددياً .                                                                                 | الثانية |
|                                            | ٣) سرعة الجسم عندما يكون قد قطع مسافة ٣٧٥ م .                                                                                         |         |
| •                                          | أوجد معادلة المماس عند $oldsymbol{w}=oldsymbol{1}$ للمنحنى $oldsymbol{v}(oldsymbol{w})=oldsymbol{w}^{^{\mathrm{T}}}	imesoldsymbol{a}$ | 7 • 1 ٨ |
| ص + ځس – ۲ = ۰                             | علما بأن معادلة المماس لمنحني ه(س) عندما س = ١ هي                                                                                     | الدورة  |
|                                            | ص-۲ <i>س</i> +٤=٠                                                                                                                     | الثالثة |

| الجواب                                                                                                                                                    | السؤال                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                           |                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| ت= ۲۶ م/ د <sup>۰</sup>                                                                                                                                   | يتحرك جسم حسب العلاقة $\frac{3}{6}$ - $6$ $\frac{3}{6}$ + $7$ = $7$ $\frac{6}{6}$ $\frac{3}{6}$ السرعة اللحظية للجسم . إزاحة الجسم بالأمتار بعد $\frac{3}{6}$ من الدقائق $\frac{3}{6}$ السرعة اللحظية للجسم . احسب تسارع الجسم عندما تكون سرعته $\frac{3}{6}$ مراد |                                                                                                                                                                                                                                                                                                                                           |                           |  |  |
| $1+\omega=\frac{a}{7}$ س                                                                                                                                  | إذا كان $\mathfrak{O}(m) = -\frac{1}{2} (m' - 7m + a)$ ، أو جد معادلة العمو دى على المماس لمنحنى $\mathfrak{O}(m)$ عند $m = 0$                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                           |                           |  |  |
| $\frac{\pi}{7} = \lambda$ عندما $\lambda = \frac{\pi}{7}$ عندما $\lambda = \frac{\pi}{7}$ عندما $\lambda = \frac{\pi}{7}$ عندما $\lambda = \frac{\pi}{7}$ |                                                                                                                                                                                                                                                                    | یتحرك جسم حسب العلاقة $\begin{bmatrix} \pi \\ \gamma \end{bmatrix}$ $\omega = 3$ جا $ \gamma \gamma + \gamma \gamma $ $ = 0$ $ \Rightarrow 0$ احسب تسارع الجسم عندما تكون سرعته $ \frac{9}{\gamma} = 0$ م $ > 0$ د | ۲۰۱۹<br>الدورة<br>الثانية |  |  |
| ۱٤٠                                                                                                                                                       |                                                                                                                                                                                                                                                                    | قذف جسم رأسياً للأعلى من قمة برج ارتفاعه $7$ متر بحيث أن ازاحته من قمة البرج تعطى بالعلاقة:                                                                                                                                                                                                                                               | 7.7.                      |  |  |

| الجواب                                            |              | السؤال                                                                                                                                                                                                                                                    | السنة                     |
|---------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ب = -٣                                            |              | إذا رسم الاقتران $v(m) = m^{2} + pm + 7$ مماساً عند النا الذارين ( $v(x)$ ) الواقعة عليه ، فقطع المماس من محور الصادات                                                                                                                                    | V.V.                      |
| $\frac{1}{\gamma} = 1$                            | · فما        | $\frac{\pi \Upsilon}{\xi}$ وحدات موجبة ، وكان قياس زاوية ميل المماس تساوي $\frac{\pi \Upsilon}{\xi}$ قيمة الثابتين $\theta$ ?                                                                                                                             | 7.7.                      |
| صي ارتفاع هو                                      | أة           | قذف جسم رأسياً للأعلى من قمة برج ارتفاعه ١٢٠م، بحيث                                                                                                                                                                                                       |                           |
| ۲۰م                                               |              | تتحدد إزاحته عن قمة البرج بالعلاقة $\dot{\boldsymbol{v}} = \boldsymbol{v} \cdot \boldsymbol{v} - \boldsymbol{o} \boldsymbol{v}^{T}$ حيث $\dot{\boldsymbol{v}}$ : إزاحة الجسم بالأمتار $\dot{\boldsymbol{v}}$ الزمن بالثواني $\dot{\boldsymbol{v}}$ أوجد : | ۲۰۲۰<br>الدورة            |
| <b>0</b> −=(∀) ε                                  |              | ١) أقصى ارتفاع يصله الجسم عن قمة البرج                                                                                                                                                                                                                    | الثانية                   |
| م/ث                                               | رض           | ٢) سرعة الجسم وهو على ارتفاع ١٥ م من سطح الأو                                                                                                                                                                                                             |                           |
| $\cdot = \overline{Y} / \frac{\circ}{Y} + \omega$ | ۳س – ۲       | أوجد معادلة العمودي لمنحنى الاقتران الذي معادلته<br>٢ ١ <u>٩ - س</u> والموازي للمستقيم الذي معادلته                                                                                                                                                       | ۲۰۲۰<br>الدورة            |
|                                                   |              | ۳س — ۲ ص — ۱۲ = ۰                                                                                                                                                                                                                                         | الثانية                   |
| ۱-= ۱<br>ب = -۱<br>ج= ۱                           | ? <b>~</b> 6 | إذا كان المستقيم الذي معادلته $3 ص = 1 m - 1$ يمس منحنى $ \frac{v}{a} = \frac{v}{a} = \frac{1}{a} $ عند $\left(1 - \frac{1}{7}\right)$ فما قيم الثوابت $\frac{1}{a}$ ب ب                                                                                  | ۲۰۲۰<br>الدورة<br>الثانية |

## الدرس السادس: قاعدة السلسلة

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|
| ب      | $? = \frac{ s }{ s }$ إذا كان $s = 3 + 1$ ، $s = 7 - 7$ ، فإن $s = 3 - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7     |  |  |  |
|        | أ) ٢ ب) ٤ جـ) ٥ د) ٨                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |  |  |  |
| †      | $(0) = \frac{1}{m}$ ، ھ $(m) = 7$ $m' - 1$ ، فإن $(0 \circ a) = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79    |  |  |  |
|        | أ) - ٤ ب) - ١ جـ ١ د) ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |  |  |  |
|        | $\overline{ig }$ إذا كان $oldsymbol{v}(w) = Y w^{'} + w - 1$ ، ه $(w) = \sqrt{w}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |  |  |  |
| د      | $ ho = \left(rac{1}{2} ight)'$ فإن $(oldsymbol{arphi} \circ oldsymbol{arphi})$ و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1.  |  |  |  |
|        | $\gamma'$ (عبر $\gamma'$ (عبر $\gamma'$ (عبر $\gamma'$ الله عبر الله الله عبر الله ع |       |  |  |  |
|        | $\bullet$ إذا كان $\sigma$ (س) قابلاً للاشتقاق وكان $\sigma$ (س $^{"}+1$ ) ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |  |  |  |
| t      | فإن ٠٠ (٩) =؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.11  |  |  |  |
|        | اً $\frac{1}{1}$ ب $\frac{1}{9}$ جے) صفر د) ۳۳                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |  |  |  |
| د      | $ ho = (1)' \Big('  \upsilon \circ \upsilon \Big)$ إذا كان $\sigma (\omega) = \omega$ ، فإن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.17  |  |  |  |
|        | أ) ٢ (ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , , , |  |  |  |
|        | إذا كان $\mathfrak{G}(m) = Y m + m - I$ ه $(m) = \sqrt{m}$ فإن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |  |  |  |
| ب      | $\mathfrak{S} = \left(\frac{1}{\xi}\right)'(\mathfrak{a} \circ \mathfrak{O})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.17  |  |  |  |
|        | $\frac{1}{7} - (2) \qquad \qquad 7 - (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |  |  |  |

| الجواب   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Ť        | $\frac{7}{m} = (9)'$ و $7 = 7$ و $9 = 7$ و $9 = 7$ و $9 = 7$ و $9 = 7$ و المنابع أ: $\frac{1}{m}$ و المنابع أن المن                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۲۰۱۳<br>إكمال |  |  |
| د        | $Y = (Y)'$ اذا کان $(U \circ a)'(Y) = (Y)'$ $U(w) = w' - ow$ ، $a'(Y) = Y$ فإن $a(Y) = ?$ أ ) ۱۲ ب $(Y) = Y$ د ) $(Y) = Y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.15          |  |  |
| ٤        | إذا كان $( o \circ a ) ( w ) = w $ ، وكانت $ o '(w) = \frac{1}{w} $ ، حيث ه قابل $ U = U $ ، حيث ه قابل $ U = U $ ، حيث ه قابل $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث المنتقاق فإن $ U = V $ ، حيث                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.10          |  |  |
| ب        | $\frac{ds}{ds}$ إذا كان $b = w' - 3w + w' = \sqrt{w'' + 7}$ فإن $\frac{ds}{ds}$ عندما $\frac{ds}{d$ | 7.10          |  |  |
| <b>ب</b> | $?=(Y)'$ و نان $(w^{7}-1)=w^{7}+1$ ، فإن $(Y)=?$ $\frac{1}{7}(w^{7}-1)=?$ 1) ازدا کان $(w^{7}-1)=?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۲۰۱٥<br>إكمال |  |  |
| ب        | $(\mathfrak{C} \circ \mathfrak{a})'(\mathfrak{C}) = \Lambda$ و $(\mathfrak{C} \circ \mathfrak{a})(\mathfrak{C}) = \Upsilon$ ، فإن $\mathfrak{a} \circ (\mathfrak{C}) = \Upsilon$ و الحال الحال $(\mathfrak{C} \circ \mathfrak{a})(\mathfrak{C}) = \Upsilon$ و الحال ا                                                                                                                                                                                                                                                                                                                                   | 7 • 1 7       |  |  |
| ح        | $? = (m)''$ هَإِن $\mathfrak{G}'(m) = \frac{1}{m - 7m + 9}$ ه هإن $\mathfrak{G}'(m) = ?$ $(m) \rightarrow 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.17          |  |  |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
|        | إذا كان $\mathfrak{G}(w) = \sqrt{\gamma + 1}$ ، ه $(w) = 9 - \gamma w$ فإن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.17    |  |  |  |
| د      | $?=(Y)'(x\circ u)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | إكمال   |  |  |  |
|        | $\frac{\psi}{\xi}$ -() $\frac{\psi}{\xi}$ () $\frac{\psi}{\xi}$ () $\frac{\psi}{\xi}$ ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |  |  |  |
| ب      | $1=0$ اذا کان $\omega=3$ $+$ $\Lambda=3$ ، عس $=0+$ س ، جد $\frac{20}{20}$ عند $\omega=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.17    |  |  |  |
|        | أ) - ۰۰ ب) - ۲۰ جـ) ۲۰ د) ۱۰۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |  |  |  |
|        | إذا كان س =جتاص ، فإن ص" تساوى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.17    |  |  |  |
| Î      | أ) — قتا ′ صطناص الله الساص طناص                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | الدورة  |  |  |  |
|        | ج_) —قتاصظتا <sup>؞</sup> ص                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الثانية |  |  |  |
| د      | $? = \left(\frac{\pi}{\xi}\right)'$ وذا کان $\upsilon(\omega) = $ جا $ V = \left(\frac{\pi}{\xi}\right)''$ وان $V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V = V$ | Y•1A    |  |  |  |
|        | اً) ۸ ب) ٤ جـ) ۲ د) –٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |
|        | إذا كان $\mathfrak{G}(m) = \frac{\xi}{a(m^{Y}-Y)}$ ، $a(1) = Y$ ، $a'(1) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |  |  |  |
| د      | $ ho = (	extbf{Y})'$ فإن ن $ ho = (	extbf{Y})'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.17    |  |  |  |
|        | ۱۰-(۵ ۲۰(ب ٤٠(أ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |  |  |  |
| د      | $7 = 3^{7} + 6 + 3 = \frac{7 - 1 - 1}{w}$ ، فإن $\frac{2 - 0}{2 + w}$ عندما $\frac{2 - w}{2}$ عندما ع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y•1A    |  |  |  |
|        | ۱) - ۲ (ب ۲ – ۱) ۲ (۱)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |
| ن      | $?=(1-)'$ اِذَا کان $\varpi(m^3-7)=7$ $m  eq *، فإن \varpi'(-1)=?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y • 1 A |  |  |  |
| -      | اً) ۱۲ ب کا جے کا حال ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |  |  |

| الجواب | السؤال          |                                           |                                        |                                    |         |
|--------|-----------------|-------------------------------------------|----------------------------------------|------------------------------------|---------|
| د      |                 |                                           | ے <sup>۲</sup> ــ <b>٥</b> س وكان      | إذا كان $v(m) = m$                 | Y • 1 A |
| J      |                 | ، فإن هـ(٢) = ؟                           | ۲۲ ، ه ۲۱ ) ۳                          | $'=(Y)'($ ه $\circ$ $\upsilon$ $)$ | الدورة  |
|        | د) ۷            | ج) ٩                                      | ب) ۱٦                                  | ۲۱ (أ                              | الثانية |
|        |                 | ?=(\−)″ <i>∪</i>                          | (۲س + ۱) <sup>۳</sup> ، فإن            | إذا كان ق(س) = (                   | 7 • 1 ٨ |
| د      | د) -۲           | ج_) -۱۲                                   | ب) ۲                                   | ۲٤ (أ                              | الدورة  |
|        | , ,             | <b>\_</b> .                               | •                                      |                                    | الثانية |
|        | =جاس ،          | ، ≠ ± ، ه(س)                              | $\frac{1}{1-\omega^{\frac{1}{2}}} = ($ | إذاعلمت أن 0 (س                    |         |
| ب      |                 |                                           | ? (س) <sup>2</sup>                     | ماقيمة ( <b>ن ٥ ه</b> )            | 7.19    |
|        | د) قتا <i>س</i> | جـ) جنا <i>س</i>                          | ب) قاس                                 | ١(أ                                |         |
|        |                 |                                           |                                        | إذا كان                            |         |
| į į    | ، ب>٠           | $\frac{1}{1} \neq \omega : \frac{1}{1-1}$ | $a(m) = \frac{\gamma}{\gamma m}$       | <i>ن</i> (س) = س <sup>۳</sup>      | 7.7.    |
| ,      |                 | يمة الثابت ب ؟                            | (۱) = - ۸ کا فما ق                     | وكان (ئ√∘ هـ)^(                    | , ,     |
|        | د) ۱٦           | جـ) ۸                                     | ب) ٤                                   | ۲ (ٲ                               |         |
| د      |                 | وجد <del>ک</del> ؟<br>وجد <del>ک</del> س  | م ، س =جاله أ                          | إذا كان ص=جتاً ٢                   | 7.7.    |
|        | د) — پس         | <b>~ (ب</b>                               | ب) عجاس                                | أ) - عجاس                          | , ,     |

| الجواب | السؤال                                                                                                                       | السنة   |
|--------|------------------------------------------------------------------------------------------------------------------------------|---------|
|        | ا إذا كان $\mathcal{O}^{1}\left(\sqrt{m}+1\right)=0$ مما قيمة $\mathcal{O}^{1}\left(1\right)$ علماً أن                       |         |
| Ť      | ں (س) > ۰؟                                                                                                                   | ۲۰۲۰    |
|        | ۱) ( ج <del>) ۲</del> ( ج ) ۱ ( أ                                                                                            |         |
|        | إذا كان $arphi(w) = w^{"} - w$ فما قيمة $(arphi \circ arphi')^{'}(1)$ ؟                                                      | ۲۰۲۰    |
| ب      | اً) ۱۱ (ب) ۲۲ جـ)۲ د) ۱۲                                                                                                     | الدورة  |
|        |                                                                                                                              | الثانية |
|        | إذا كان المستقيم $m + m = 1$ عمودياً على منحنى $v(m)$ عند                                                                    | 7.7.    |
| ج      | $\omega = 1$ فما قیمة $\omega = 1$ فما قیمة $\omega = 1$ فما قیمة $\omega = 1$                                               | الدورة  |
|        | أ) - ٣٦ ب ٣٦ ج) ٤ د) - ٤                                                                                                     | الثانية |
|        | $?$ إذا كان $\mathscr{O}=\mathscr{V}$ ، $\mathscr{S}=\mathscr{V}=\mathscr{V}$ فما قيمة $\frac{2\mathscr{O}}{2\mathscr{O}}$ . | 7.7.    |
| ĺ      |                                                                                                                              | الدورة  |
|        | $\frac{1}{\pi}(2) \qquad \frac{\pi}{6} (\Rightarrow \qquad 7(-1))$                                                           | الثانية |

| الجواب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | السؤال                                                                                                                              | السنة  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|
| ١٣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إذا كان ل $(m) = m 	imes (m^{\prime} - mm + m)$ فأوجد ل $(m)$ ، علما                                                                | 7٧     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | بأن ه (۳) = ٤ ، ه (۳) = ١                                                                                                           |        |
| (س ٤ + <sup>٢</sup> (١ + <sup>٢</sup> س)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ا إذا كان $\mathfrak{U}(m) = m^{7} + 7m + 0$ ، ه $(m) = m^{7} + 1$                                                                  | 7٧     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | فأو جد (ئ ∘ ھ) (س)                                                                                                                  | دراسات |
| ص = ہس – ہ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Upsilon = (\circ)$ إذا كان $\varpi(\varpi) = (\varpi'+1)$ ، $(\circ) = (\circ)$                                                   | ۲۰۰۸   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Upsilon = \mathcal{O}$ جد معادلة المماس لمنحنى $\mathcal{O}(\mathcal{O})$ عندما س                                                 | إكمال  |
| ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | اذا کانت $ ص = 3^{-1} - 1$ ، $ 3 = (m+1)^{7} $ ، جد $ 3 = m $ عند $ 2 = m $                                                         | 79     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ي د د د د د د د د د د د د د د د د د د د                                                                                             | إكمال  |
| ٣-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $1 = \frac{z^{0}}{z}$ عند $\omega = (3^{7} - 73)^{7}$ عند $\omega = 1$ جد $\frac{z^{0}}{z^{0}}$ عند $\omega = 1$                    |        |
| ۲.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 < m وذا کانت $0 = 3$ $+$ $3$ $+$ $3 = m$ $ 4$ $+$ $3 = m$                                                                         | 7.1.   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 = 2 عند ع = ا                                                                                                                     | إكمال  |
| \frac{1 \text{ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}}\ext{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\\ \text{\text{\text{\text{\text{\tinit}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\xi}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tex{\tex | $\mathfrak{P}=1$ اذا کانت $\mathfrak{P}=1$ ، $\mathfrak{P}=3$ یه $\mathfrak{P}=3$ ، جد $\frac{2}{2}$ عند س                          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (w-1)' اثبت أن ص $w=-1$ ، أثبت أن ص $w=-1$                                                                                          |        |
| 977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | إذا كان $\upsilon(\omega) = \omega^{\dagger} + 7$ ، ه $(\omega) = \omega^{\dagger} + 7$ ، جد $(\upsilon \circ a)^{\prime\prime}(7)$ | 7.18   |

| الجواب                  | السؤال                                                                                                                                                                                                                                                       | السنة                     |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| صفر                     | $\binom{\Upsilon}{w} + \binom{W}{w} = (w)$ إذا كان المماس لمنحنى الاقتران $v(w) = (w)$ عند $v(w) = 1$ يمر بالنقطة (١٠٠) فاحسب قيمة                                                                                                                           | 7.17                      |
| 1                       | $\cdot < \sigma$ إذا كان $\sigma(\Upsilon m^{7} - 1) = \sqrt[7]{(m + 7)^{\frac{3}{2}}}$ ، $m > 0$ فاحسب نهيل $\sigma(V + a) - \sigma(V)$ ؟                                                                                                                   | 7.17                      |
|                         | $1-1-1$ اذا کان $m=3'$ ، $m'=3+1$ فأثبت أن ۲۰ س $m \ge \frac{2m}{2m}=m'-1$                                                                                                                                                                                   | Y • 1 V                   |
| ب=-۲                    | $\Upsilon = (N)' \Big( '  \upsilon \circ \upsilon \Big)$ إذا كان $\upsilon (m) = \Upsilon m + m$ ، وكان و $\upsilon \circ \upsilon $ | 7.17                      |
| <i>ځ</i> ب <sup>۲</sup> | اذا کان $ ص = 1 جا ۲ س - بحتا ۲ س أثبت أن  ( \omega' )^{'} + 3 \omega' = 3^{7} + 3 $                                                                                                                                                                         | 7 • 1 ٨                   |
| الزاوية ن               | إذا كان $ص=3 ظا له ملا ملا على \pi=3 + \infty بديث جد ثابت وكان \pi=\frac{\pi}{3} عندما \pi=\frac{\pi}{3} أوجد قيمة الثابت ج ؟$                                                                                                                              | 7.7.                      |
| ₹V × 1 —                | اذا کان جا $^{7}(\mathfrak{G}(\Upsilon m)) = \frac{\eta}{m} + \frac{\eta}{\gamma}$ حیث $m \neq 0$ وکان $\mathfrak{G}(\Upsilon m) = \frac{\eta}{\gamma}$ ، أوجد $\mathfrak{G}(\Upsilon)$ .                                                                    | ۲۰۲۰<br>الدورة<br>الثانية |

## الدرس السابع: الاشتقاق الضمني

| الجواب           | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | السنة                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ب                | $? = \frac{\frac{7}{r}}{\sqrt{m}} + \frac{\frac{7}{r}}{\sqrt{m}} + \frac{\frac{7}{r}}{\sqrt{m}} = ?$ $\frac{\frac{1}{r}}{\sqrt{m}} \left(\frac{\frac{m}{m}}{\sqrt{m}}\right) - (-\frac{\frac{1}{r}}{\sqrt{m}}\right) + \frac{\frac{1}{r}}{\sqrt{m}} \left(\frac{\frac{m}{m}}{\sqrt{m}}\right) + \frac{\frac{1}{r}}{\sqrt{m}} - \left(\frac{\frac{m}{m}}{\sqrt{m}}\right) + \frac{\frac{1}{r}}{\sqrt{m}} - (-\frac{m}{m}) + \frac{\frac{1}{r}}{\sqrt{m}} - (-\frac{m}{m}) + \frac{\frac{1}{r}}{\sqrt{m}}\right)$ $= \frac{\frac{1}{r}}{\sqrt{m}} + \frac{\frac{1}{r}}{\sqrt{m}} - (-\frac{m}{m}) +$ | 7.17                      |
| <del>-&gt;</del> | يتحرك جسم في خط مستقيم وفق العلاقة $13 = \sqrt{16}$ ، حيث ع سرعة الجسيم ، ف المسافة المقطوعة ، فإذا كان تسارعه يساوي $\Lambda a / \hat{c}^{\gamma}$ ، فإن القيمة الموجبة للثابت $1 \approx 2$ ) $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$ $\frac{1}{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲۰۱۸<br>الدو ة<br>الثانية |
| د                | $ ho$ إذا كان $rac{1}{3}(m) = 7$ ا $m$ ، $rac{1}{3}(m) = rac{1}{3}$ ، فإن $rac{1}{3}(m) = rac{1}{3}(m) = rac{1}{3}(m)$ ، في أن أن أن أن أن $rac{1}{3}(m) = rac{1}{3}(m) = rac{1}{3}(m)$ ، في أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۲۰۱۸<br>الدورة<br>الثالثة |
| ب                | إذا كانت $ m = ظاص فإن  \frac{2m}{2m} = ?  أ) قا ص ب جما ص ب ما ص من من المناس و الم$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 • 1 9                   |
| f                | إذا علمت $0 = 3^7$ ، $3 = جاس+جتاس ، فما قيمة \frac{2m}{2m} ?  أ) 7 جتا 7 س ب) 7 جا 7 س ب ب ) 7 جا 7 س د) صفر$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.19                      |

| الجواب   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | السنة   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|          | ہے۔ اوز کانت $m = $ جا $m$ ہ $=$ ہوں ہیں ہے۔ $\frac{\pi}{7}$ ( فما قیمة $\frac{\pi}{8}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.19    |
| ب        | $\frac{1}{\sqrt{1-w^{2}}} \qquad \qquad \psi \qquad \frac{1}{\sqrt{1-w^{2}}} \qquad \qquad \psi \qquad \qquad $ | الدورة  |
|          | $\frac{1-}{\sqrt{1-w^{7}}} $ (2) $\frac{-w}{\sqrt{1-w^{7}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | الثانية |
| ۴        | إذا كان $m'+m'=9$ فما قيمة $\frac{2m}{2m}$ ؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.19    |
| 1        | $\frac{-w}{\psi} - \frac{\omega}{\omega} + \omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | صناعي   |
| ~        | $(1-61)$ إذا كان $m^{-1}-m$ $m^{-1}-m$ فما قيمة $\frac{2m}{2m}$ عند النقطة $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۲٠۲٠    |
| <u>ج</u> | ۱)-۲ ب)-۲ جـ ۱ (۱)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
|          | $^{2}$ إذا كان $^{2}$ $^{2}$ $^{3}$ إذا كان $^{3}$ $^{4}$ $^{3}$ فما قيمة $^{2}$ $^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.7.    |
| ĺ        | $\frac{7}{4}$ ب $\frac{7}{4}$ ب $\frac{7}{4}$ د) صفر                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الدورة  |
|          | σ—(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الثانية |
|          | $? (36)$ $\Rightarrow 30$ $\Rightarrow 1 + 1$ $\Rightarrow 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.7.    |
| ب        | $a^{-170} = 700 + 100 + 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | الدورة  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | الثانية |

| الجواب                                                           |                                |                                    | السؤال                                                                                                                 | السنة   |  |
|------------------------------------------------------------------|--------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------|--|
| <u> </u>                                                         | عند النقطة (١٠١)               |                                    | إذا كان $(m+m)^{\circ} = m^{1}m^{m} + 1$ فأوجد $\frac{2m}{2m}$ عند النقط                                               |         |  |
| · · · · · · · · · · · · · · · · · · ·                            | صجتا (س <u>؛</u><br>۱ – سجتا   |                                    | إذا كان ٢س + ص =جاسص ، أوجد <del>2 ص</del><br>عس                                                                       | Y • • V |  |
| (00)                                                             |                                |                                    | <i>G</i> 5                                                                                                             | دراسات  |  |
| 1                                                                | <u>عند</u><br>وس               | ۲ جد ۰                             | $+$ اذا کانت ع $=$ 0 $-$ س $^{7}+$ ، ص $^{7}=$ س $+$                                                                   | ۲۰۰۸    |  |
|                                                                  |                                |                                    |                                                                                                                        |         |  |
|                                                                  |                                | = <del>  20</del>                  | جد <del>ح</del> ص إذا كان                                                                                              | ۲۰۰۸    |  |
| ٤)(٢س-٤)                                                         | - ` ( سع — ` ر                 | (۳ (س                              | $7 = ^{7} - 7 - ^{7} = 7$ (1) $m^{7} + 7 - 7 = 7$ (2) $m^{7} - 3 + 7 = 7 = 7 = 7$                                      | إكمال   |  |
| 1 &                                                              | د <u>حع</u><br>د <del>وس</del> | + ۸ ، ج                            | ا اذا کانت $ص + + $ س $ص = ۸ ۱ ، ع = 0 ص - ص$                                                                          | ۲۰۰۹    |  |
|                                                                  |                                |                                    | عندما ص = ٦                                                                                                            |         |  |
| , , , , , ,                                                      |                                |                                    | جد معادلة المماس المرسوم لمنحني العلاقة                                                                                |         |  |
| $(\xi - \omega) \frac{\xi}{\tau} =$                              | ∞ – ۳                          | لاطع                               | $(oldsymbol{w}-oldsymbol{w})^{'}+oldsymbol{Y}oldsymbol{w}-oldsymbol{w}-oldsymbol{w}-oldsymbol{w}$ عند نقطة $/$ نقاط تق | ۲۰۱۰    |  |
|                                                                  |                                |                                    | - + + + = 0منحناها مع المستقيم                                                                                         |         |  |
| $\cdot = '$ اذا کانت $o'' = \frac{o}{m + r}$ ، أثبت أن $o'' = r$ |                                |                                    |                                                                                                                        |         |  |
| <u> </u>                                                         | عندما                          | <del>اکا</del><br>جد <del>کس</del> | 7 =                                                                                                                    | 7.17    |  |
| ٣                                                                |                                |                                    | m Y=  m arphi                                                                                                          |         |  |

| الجواب                                                    |             | السؤال                                                                                                                                                                                 | السنة   |
|-----------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <u>'-</u> ' <u>7</u>                                      |             | ا فنا کانت $m = 1$ ، $m + m' = 7$ ، جد $\frac{23}{2m}$ عندما $m = 1$                                                                                                                   | 7 • 1 7 |
| $\frac{2}{\pi} + \omega \frac{\xi}{\pi} = -\frac{1}{\pi}$ | ص =         | أوجد معادلة المماس و العمودي على المماس لمنحني القطع                                                                                                                                   | 7.18    |
| $\frac{2}{\xi} - \omega \frac{\pi}{\xi} =$                | ص =         | الذي معادلته $\Upsilon$ س $^{7}-\Upsilon$ ص $^{7}=0$ عند النقطة $($                                                                                                                    | الإكمال |
| ، ن أعداد صحيحة                                           | ىىفر، م     | إذا كان $\left(\frac{m}{l}\right)^{3} = \left(\frac{m}{l}\right)^{3}$ حيث أ، ب أعداد حقيقية لا تساوي صموجبة غير متساوية أثبت أن: $\frac{zm}{zm} = \frac{v}{l}\left(\frac{m}{m}\right)$ | 7.10    |
|                                                           |             | $\frac{m}{r} = m$ إذا كان $m$ $m$ $m$ ، فبين أن $m$                                                                                                                                    | 7.17    |
|                                                           |             |                                                                                                                                                                                        | إكمال   |
|                                                           |             |                                                                                                                                                                                        | 7.17    |
|                                                           |             | $\bullet = '$ إذا كان $m = $ جتاص ، أثبت أن $\left( m - 1 - 1 \right) $ و                                                                                                              | الدورة  |
|                                                           |             |                                                                                                                                                                                        | الثانية |
|                                                           |             |                                                                                                                                                                                        | 7 • 1 ٨ |
|                                                           |             | $\frac{\gamma}{\omega}$ ا ذا کان $\omega$ – س $\omega$ = جاس ، أثبت أن $\omega$ $\omega$ + $\omega$ = $\omega$                                                                         | الدورة  |
|                                                           |             |                                                                                                                                                                                        | الثالثة |
|                                                           |             | $\frac{\omega}{\omega}=\sqrt{\omega^2}$ إذا كان $(\omega+\omega^2)=\omega^2$ س أثبت أن $\omega=\frac{\omega}{\omega}$                                                                  | 7.7.    |
|                                                           |             |                                                                                                                                                                                        | 7.7.    |
|                                                           | $\cdot = 0$ | إذا كان $ = \frac{7}{m} $ ، $ = \frac{7}{m} $ أثبت أن $ = \frac{7}{m} $ $ = \frac{7}{m} $                                                                                              | الدورة  |
|                                                           |             |                                                                                                                                                                                        | الثانية |

# الوحدة الثانية

تطبيقات التفاضل

#### الدرس الأول: نظريتا رول والقيمة المتوسطة

| الجواب |                       | (                    | السؤال                   |                                                  | السنة   |
|--------|-----------------------|----------------------|--------------------------|--------------------------------------------------|---------|
|        |                       | الاقتران<br>-        | با نظرية رول على ا<br>-  | قيمة جـ التي تحدده                               | 7       |
| ج      |                       | $: rac{\pi}{7}$ هي  | متاس في الفترة [٠        | <i>∪</i> (س) =جاس+ج                              | +       |
|        | د) $\frac{\pi}{7}$ (د | $\frac{\pi}{\xi}$ (ج | $rac{\pi}{7}$ (ب        | أ) صفر                                           | 7 • 1 1 |
|        |                       | رجة الثانية وكان     | ، كثير حدود من الد       | ليكن ق (س)اقتران                                 |         |
| f      | يث                    | ُقل ج∈]−اءا[ بح      | فإنه يوجد على الأ        | $(\mathfrak{f}-)\upsilon=(\mathfrak{f})\upsilon$ | 7       |
| 1      | نعطاف                 | ب) جـ نقطة ان        | •=                       | (*)'ひ(                                           | إكمال   |
|        |                       | د) غير ذلك           | •=(                      | جـ) ۍ (س)                                        |         |
|        |                       | وسطة للاقتران        | ما نظرية القيمة المت     | قيمة جـ التي تحدده                               |         |
| ب      |                       | ِ  - ۲۰۱]  هي :      | <i>ى –</i> ٦ في الفترة [ | $\upsilon(\omega) = \omega^{+} + \omega$         | 7       |
|        | د) - ۲                | جـ) ٣                | <u>'</u> (ب              | <u>'-</u> (1                                     |         |
|        | بيق نظرية             | صول عليها من تطب     | جـ التي يمكن الح         | مجموعة جميع قيم                                  |         |
| جـ     |                       | فترة [۱،۰] هي :      | ۍ (س) = ۸ في ال          | رول على الاقتران و                               | 7.17    |
|        | د) [۱٬۰]              | جـ)]١٠٠[(            | ب) {٠}                   | { } (أ                                           |         |
| د      | ول على                | ىقق شروط نظرية ر     | س '— ٣ س — أ يح          | إذا كان ن(س)=                                    |         |
|        |                       | ي :                  | قيمة الثابت أتساو        | الفترة [٦٠،أ] ، فإن                              | 7.10    |
|        | د) ٤                  | ج) ٣                 | ب) ۲                     | ۱ (أ                                             |         |

| الجواب      | السؤال                                                                              | السنة   |
|-------------|-------------------------------------------------------------------------------------|---------|
|             | إذا كان ق (س) يحقق شروط نظرية رول على [أ،ب] فإن العبارة                             |         |
|             | الصحيحة دائماً :                                                                    |         |
|             | $\cdot > (ب) \times (i)$ ان $(i)$                                                   | 7.10    |
| <i>ج</i> ــ | ب) يوجد على الأقل ح ∈]أ،ب[ بحيث ٥ (ح) = ٠                                           | إكمال   |
|             | جـ) يوجد على الأقل ج ∈]أ،ب[ بحيث يكون المماس عندها أفقياً                           |         |
|             | د) ق (س) يحقق شروط رول على أي فترة جزئية من [أىب]                                   |         |
|             | إذا كان ع (س) = ٣ / <del>س</del> - س يحقق نظرية رول في [٤٠١]                        |         |
| جـ          | فإن قيمة جـ التي تحددها النظرية هي :                                                | 7.17    |
|             | $\gamma$ (ع $\frac{q}{\xi}$ (ج $\frac{\gamma}{\xi}$ (ب $\frac{\pi}{\gamma}$ (أ      |         |
|             | قيمة جـ التي تحددها نظرية رول للاقتران ٥٠ (س) = ٢ ٢ س ٢ – ٢ س                       |         |
| ب           | في الفترة [٦٤٠] هي :                                                                | 7.17    |
|             | أ)صفر ب) ٤  جـ) ٣  د) ٥                                                             |         |
|             | قيمة جـ التي تحددها نظرية رول للاقتران                                              | 7 • 1 ٧ |
| ب           | $ 1+\omega Y-Y\omega = \omega $                                                     | الدورة  |
|             | في الفترة [۲۰۰] هي :                                                                | الثانية |
|             | مرية جـ اللي تحددها نظرية رول على الاقتران ٢ على الاقتران ٢                         |         |
| د           | : حاس $+$ جتاس في الفترة $\left[rac{\pi}{7}$ هي $\left[rac{\pi}{7} ight]$ هي      | 7.11    |
|             | $\frac{\pi}{\xi}$ (ع $\frac{\pi}{\eta}$ (ج $\frac{\pi}{\eta}$ د) $\frac{\pi}{\eta}$ |         |

| الجواب   |                      | ·                                                     | السؤال                        |                                                            | السنة   |
|----------|----------------------|-------------------------------------------------------|-------------------------------|------------------------------------------------------------|---------|
|          | - س — ٦ في           | ن <del>0</del> (س) = س ۲                              | ا نظرية رول للاقترا           | قيمة جـ التي تحدده                                         | 7.17    |
| جـ       |                      |                                                       | :                             | الفترة [-٢٠٣] هي                                           | الدورة  |
|          | د) 🔫                 | <u>'−</u> (→                                          | <del>/</del> (ب               | <del>r</del> (1                                            | الثانية |
|          |                      | سطة على الاقتران                                      | ا نظرية القيمة المتو          | قيمة جـ التي تحدده                                         | 7.17    |
| Í        |                      | هي :                                                  | س في الفترة [٤٤١]             | $\mathcal{O}(\mathcal{O}) = \mathcal{O}^{+} + \mathcal{O}$ | الدورة  |
|          | د) ۳                 | $\frac{\forall}{\lambda}$ ( $\frac{\lambda}{\lambda}$ | ب <del>۲</del>                | <u>°</u> (†                                                | الثالثة |
|          | ٦ = (س) ٦            | ول على الاقتران و                                     | لتي تحددها نظرية ر            | ما مجموعة قيم جـ ا                                         |         |
| <b>E</b> |                      |                                                       |                               | في الفترة [٢٠٠] ؟                                          | 7.19    |
|          | [٢٠٠] (১             | جـ) ]۲۵۰[                                             | ب) {٠}                        | φ (1                                                       |         |
|          | لة ف <i>ي</i> [١،،ب] | وط القيمة المتوسم                                     | <b>٠٠ + ٤س</b> يحقق شر        | إذا كان ن(س) = س                                           | 7.19    |
| Í        | ۶ .                  | ہ<br>اوی <del>-</del> فما قیمة ب                      | تحددها النظرية تس             | وكانت قيمة جـ التي                                         | الدورة  |
|          | د) ۹                 | ج_)٢                                                  | ب) ہ                          | اً) ٤                                                      | الثانية |
|          |                      |                                                       |                               | إذا علمت أن الاقتراد                                       |         |
|          | ق شروط               | )<br>— ،س ≠ ۳ يحق                                     | $\frac{(w-1)^{(w+b)}}{(w-7)}$ | $\frac{-^{Y}\omega}{}=(\omega)$                            |         |
| 5        |                      |                                                       |                               | نظرية رول في الفترة                                        | 7.7.    |
|          |                      |                                                       |                               | هي                                                         |         |
|          |                      |                                                       | بت ك ؟                        | جـ = • فما قيمة الثاب                                      |         |

| الجواب | السؤال                                                                                |         |  |  |  |  |
|--------|---------------------------------------------------------------------------------------|---------|--|--|--|--|
|        | ما قيمة جـ التي تحددها نظرية القيمة المتوسطة على الاقتران                             | 7.7.    |  |  |  |  |
| ج      | $oldsymbol{arphi}(w) = w \ ^{1} + w - 7$ في الفترة $[-1$ ٢٤] ؟                        | الدورة  |  |  |  |  |
|        | $\frac{1-}{7}(2) \qquad \frac{1}{7}(2) \qquad \frac{\pi}{7}(1) \qquad \frac{7}{7}(1)$ | الثانية |  |  |  |  |

| الجواب            | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | السنة         |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <u>₹</u> ±        | $1 \geq m$ ، $1 \leq m$ ، $m \leq 1$ بين فيما إذا كان الاقتران $m \in m$ . $m \leq m$ $m \leq 1$ . $m \leq 1$ يحقق شروط نظرية القيمة المتوسطة على $[-1^{\infty}]$ ، ثم أوجد جـ التي تعينها النظرية .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 77            |
| 7                 | إذا كان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲۰۰۷ دراسات   |
| ١                 | بين أن الاقتران $(w) = w' + \frac{1}{w'}$ يحقق شروط نظرية رول على الفترة $\left[\frac{1}{1}\right]^2$ ثم جد قيمة / قيم جـ التي تعينها النظرية .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۲۰۰۸<br>إكمال |
| اً=٥<br>ب=٢<br>=- | $1 \geq m \geq 1$ ، $-1 \leq m \leq 1$<br>$1 \leq m \leq 1$ | Y • • 9       |
| ١                 | بين أن الاقتران $\upsilon(w) = w + \frac{1}{w}$ يحقق شروط نظرية القيمة المتوسطة على الفترة $\left[\frac{1}{2}, \Upsilon\right]$ ثم جد قيمة / قيم جـ التي تعينها النظرية .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۲۰۰۹<br>إكمال |
| <u>*</u>          | $1 > w \ge 1 - c$ $1 < w < 1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۲۰۱۰          |

| الجواب                                 | السؤال                                                                                                                                                                                                                                      | السنة         |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                                                                                                                                                                                                                             | 7.11          |
|                                        | ں ، ك، اقترانان كل منهما يحقق شروط نظرية رول على الفترة [أ،ب]                                                                                                                                                                               | 7.11          |
| ; [أ،ب].                               | ابحث هل يحقق حاصل الضرب ( $oldsymbol{v}	imesoldsymbol{v}$ ) شروط هذه النظرية على الفتر                                                                                                                                                      | إكمال         |
| ° 7                                    | بين أن الاقتران $\mathfrak{O}(m) = Ym' + Ym + 1$ يحقق شروط نظرية القيمة المتوسطة في [٤٤١] ثم جد قيمة / قيم جـ التي تحددها النظرية .                                                                                                         | 7.17          |
| ۲ = أ<br>ب = ۲<br>۲ = ب                |                                                                                                                                                                                                                                             | ۲۰۱۲<br>إكمال |
| ۲= ۱<br>ب = ۱۹<br>ج = <del>۲</del>     |                                                                                                                                                                                                                                             | 7.17          |
| <del>'</del> -                         | $1 \geq 0$ ہنصلاً علی $1 \geq 0$ ہنصلاً علی $1 \leq 0$ ہنصلاً علی $1 \leq 0$ ہنصلاً علی $1 \leq 0$ ہنس $1 \leq 0$ ہنس $1 \leq 0$ ہنس أن $1 \leq 0$ ہنس ہو طنظریة رول علی $\left[ \frac{V}{W}, W \right]$ ، ثم جد قیم جالتي تحددها النظریة . | ۲۰۱۳<br>إكمال |

| الجواب                         | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | السنة         |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <b>o</b>  ∕                    | $Y \geq m \geq 1$ ، $Y = \{m^{2} + \gamma m\}$ ، $Y \leq m \leq Y$ بين أن الاقتران $\mathcal{O}(m) = \{m^{2} - \gamma m + \gamma \}$ ، $Y \leq m \leq Y$ يحقق شروط نظرية القيمة المتوسطة على الفترة [٣٠١]، ثم جد قيمة جـ التي تحصل عليها من تطبيق النظرية .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.18          |
| ٦=١                            | $m>m\geq 1$ ه $=\left\{ \begin{bmatrix} rac{1}{m} \end{bmatrix}  ight\}$ إذا كان الاقتران $m(m)=\left\{ \begin{bmatrix} rac{1}{m} \end{bmatrix}  ight\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| ب = ٣<br>جـ = - ٩              | $igg( m{w} \ m{w} \ m{w} ) = m{w} $ يحقق شروط نظرية رول ، أوجد الثوابت أ ، ب ، جـ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.18          |
|                                | جد الثوابت أ ، ب ، جـ التي تجعل الاقتران                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 1 -= 1                         | $1>\omega \geq \cdot   \gamma-\omega-\gamma $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| ب = ۷                          | $	au> oldsymbol{arphi} = \left\{ egin{array}{ll} oldsymbol{arphi} & o$ | 7.18          |
| جـ = ٥                         | ر ج                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | الأكمال       |
|                                | يحقق شروط نظرية القيمة المتوسطة على الفترة [٢٤٠]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| \ \                            | بين أن الاقتران $\upsilon(m) = \frac{m^{1} + 1}{m}$ يحقق شروط نظرية رول على                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ۲۰۱٤<br>إكمال |
| ج_ = ١                         | الفترة $\left[\frac{1}{2} + \frac{1}{2}\right]$ ثم جد قيمة / قيم جـ التي تعينها النظرية .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | الضفة         |
| أ = ١ ، ب =٦                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |
| $\frac{\overline{NM}}{MM} = -$ | يحقق شروط نظرية القيمة المتوسطة على [٣٠٠] ، فعين قيم الثابتين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.10          |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |

| الجواب                             | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | السنة                     |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ٩<br>-<br>٤                        | Y = V $Y = V $ $Y = V$ | ۲۰۱۵<br>إكمال             |
| ۱ = ۱<br>ب = ٤                     | $ \begin{vmatrix}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.17                      |
| ا = ۱<br>ب =۱                      | $1 > w \geq \cdot \cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.17                      |
| اً = ۳، ب = ۱<br><del>۳</del><br>٤ | $1 \geq m \geq 0$ ، $\leq m \leq 1$ $\geq m \leq 1$ $\leq m \leq 1$ إذا كان $\mathfrak{O}(m) = \begin{cases} -m' + mm + 1 & \text{if } 1 < m \leq 1 \\ -m + 1 & \text{if } 1 < m \leq 1 \end{cases}$ يحقق شروط نظرية القيمة المتوسطة في الفترة [۲۰۰] ، فجد قيمة كل من                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.17                      |
| <u>٩</u><br>٤                      | إذا كان $\mathfrak{O}(m) = 7$ $\sqrt{m} - 7$ ابحث في تحقق شروط نظرية القيمة المتوسطة للاقتران $\mathfrak{O}(m)$ على الفترة [٤٠١]، ثم جد قيمة $=$ التى تعينها النظرية .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲۰۱۸<br>الدورة<br>الثانية |
|                                    | <ul> <li>ن ، ك ، اقترانان كل منهما يحقق شروط نظرية رول على الفترة [أ،ب]</li> <li>أثبت أن (0∘ك)(س) يحقق شروط هذه النظرية على الفترة [أ،ب]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲۰۱۸<br>الدورة<br>الثالثة |

| الجواب           | السؤال                                                                                                                                                                                                                                                                            | السنة                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| جـ = ٢           | إذا كان الاقتران $u(m) = \frac{1}{m}$ ، $m \in [968]$ فما قيم جـ التي تعينها النظرية المتوسطة على $u(m)$                                                                                                                                                                          | 7.19                      |
| ·= <del>/-</del> | $1 > m \ge m - 4$                                                                                                                                                                                                                                                                 | ۲۰۱۹<br>الدورة<br>الثانية |
| ]/••[ ∪{₹√}      | إذا كان $\mathcal{O}(\mathcal{O})$ معرف على الفترة [۲۰۰] حيث $\sim \sim \frac{\mathcal{O}(\mathcal{O})}{V}$ ، $\sim \sim $                                                                        | ۲۰۲۰                      |
|                  | إذا كان $\mathfrak{U}(m)$ كثير حدود ، وكان المستقيم $m=3m-7$ يمس منحنى $\mathfrak{V}(m)$ عند (١٥٠١) والمستقيم $m-7$ $m=1$ يمس منحنى $\mathfrak{V}(m)$ عند (٣٥٠) باستخدام نظرية رول ، أثبت يمس منحنى $\mathfrak{V}(m)$ عند (٣٥٠) باستخدام نظرية رول ، أثبت أنه يوجد $\mathfrak{c}$ | 7.7.                      |

| الجواب     | السؤال                                                                                              | السنة                     |
|------------|-----------------------------------------------------------------------------------------------------|---------------------------|
| ا=1<br>ب=۲ | $   \left\{ \begin{array}{l}         \left\{ \begin{array}{l}                                     $ | ۲۰۲۰<br>الدورة<br>الثانية |

## الدرس الثاني: الاقترانات المتزايدة والمتناقصة

| الجوا | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Î     | إذا كان $v(m)$ ، $a(m)$ معرفان على $extstyle 2$ وكان $extstyle 3$ ، $extstyle 3$ ، $extstyle 4$ , $extstyle 4$ | 7.17  |
|       | ج) ه (س) ثابتاً على ع<br>د) ٥٠ (س) < هـ (س) على ع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| ب     | ا إذا كان $\mathfrak{O}'(m) = (m^{Y}-1)^{T}(m-Y)^{2}$ ، فإن $\mathfrak{O}(m)$ يكون متناقصاً على الفترة : $[167]$ ب $[167]$ د) $[160]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.17  |
| f     | الشكل المجاور يمثل منحنيات اقترانات ، المنحنى الذي يكون متناقصاً على الفترة $[-1, -1, -1]$ هو منحنى : $(-1, -1, -1)$ هو منحنى $(-1, -1, -1)$ هو منحنى : $(-1, -1, -1)$ هو منحنى الفترة على الفترة الشكل المجاور يمثل منحنيات اقترانات ، المنحنى الذي يكون متناقصاً على الفترة $(-1, -1, -1)$ هو منحنى : $(-1, -1, -1, -1)$ هو منحنى : $(-1, -1, -1, -1)$ هو منحنى : $(-1, -1, -1, -1, -1)$ هو منحنى : $(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.17  |

| الجوا    | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ب        | إذا كان $\mathcal{O}(m)$ متصلا على الفترة [أعب] ، وقابلا للاشتقاق على الفترة ]أعب وكانت جميع مماسات لمنحنى $\mathcal{O}(m)$ في ]أعب تصنع زاوية حادة مع الاتجاه الموجب لمحور السينات ، فإن العبارة الصحيحة :  أ) $\mathcal{O}(m)$ متناقص في الفترة [أعب] $\mathcal{O}(m)$ متناقص في الفترة [أعب] د) $\mathcal{O}(m)$ متناقص في الفترة [أعب] د) $\mathcal{O}(m)$ متناقص في الفترة [أعب]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Y•1A                      |
| <b>E</b> | منحنى الاقتران الذي يحقق الشرطين ٥٠ (س) < ، ، ٥٨ (س) < ، في الفترة ] أ، ب[ يمثله الشكل:  (ا) قراما ( الله الشكل : المناب | ۲۰۱۸<br>الدورة<br>الثانية |
| Î        | ما قیمة / قیم الثابت $1$ التی تجعل الاقتران $v(w) = (7^{1} - 7)w + V$ متزاید علی ع $9$ $9$ $1 < 7$ $1 < 7$ $1 < 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.19                      |
| Î        | اذا کان $\mathfrak{O}(\mathfrak{m}) = \underbrace{Le_{\kappa}}_{L} + Le_{\kappa}$ ما الفترة التی یکون فیها $(\mathfrak{m}) = Le_{\kappa}$ علی متزاید ؟ $(\mathfrak{m})$ متزاید ؟ $(\mathfrak{m}) = \underbrace{\left[\frac{\pi}{\tau}, \frac{\pi}{\tau}\right]}_{L}$ د) $(\mathfrak{m}) = \underbrace{\left[\frac{\pi}{\tau}, \frac{\pi}{\tau}\right]}_{L}$ د) $(\mathfrak{m}) = \underbrace{\left[\frac{\pi}{\tau}, \frac{\pi}{\tau}\right]}_{L}$ د) $(\mathfrak{m}) = \underbrace{\left[\frac{\pi}{\tau}, \frac{\pi}{\tau}\right]}_{L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۲۰۱۹<br>الدورة<br>الثانية |

| الجواب | السؤال                                                                             | السنة   |
|--------|------------------------------------------------------------------------------------|---------|
|        | إذا كان $\upsilon(m) = \frac{m}{m+1}$ هما العبارة الصحيحة مما يأتي                 |         |
| ب      | متزاید علی ح<br>أى تراید على ح                                                     | 7.7.    |
|        | ب) <i>∪ (س)</i> متزاید علی ]- ∞۰-۱[ وعلی ]-۱۰∞[                                    |         |
|        | <b>ج</b> ) <b>ں (س</b> ) متناقص علی ح                                              |         |
|        | د) <i>∪ (س)</i> متناقص على ]– ∞،-۱[ وعلى ]–١،∞[                                    |         |
|        | ليكن ١٠ (س)، هـ (س) اقترانين سالبين وقابلين للاشتقاق ومتناقصين                     |         |
|        | على ح ، وكان $oldsymbol{U}(oldsymbol{w}) = oldsymbol{(w)}^{'}$ فأي العبارات الآتية | 7.7.    |
| ħ      | صحيحة على الاقتران ل (س) ؟                                                         | الدورة  |
|        | أ) ل (س) متناقض على ح ب) ل (س) متزايد على ح                                        | الثانية |
|        | <b>ج</b> ) ل ′ (س ) ≥ ٠ د ) ل (س ) اقتران ثابت                                     |         |

| الجواب                                                   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | السنة   |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| متزاید[۲،∞[∪[−۲،۰]                                       | <b>\( \_ \) \( \) \  \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( </b> | 7 • • • |
| ومتناقص[۲۰۰]∪]−∞۰-۲]                                     | عين فترات التزايد والتناقص للاقتران $oldsymbol{o}(oldsymbol{w}) = ig _{oldsymbol{w}^{'}-oldsymbol{\xi}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إكمال   |
| ومن ذلك أثبت أن $\left\lceil \frac{\pi}{2} \right\rceil$ | بين أن الاقتران 0 (س) =جاس – س متناقص على الفترة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y • • A |
|                                                          | _<br><b>جاس</b> ≥ س في نفس الفترة .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , • • • |
| منحناه في الربع الأول                                    | إذا كان الاقتران ٢ (س) كثير حدود معرفاً على [٦٠٢] ويقع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| $(w)=(v\times a)$ ران ك $(w)=(v)$                        | ومتناقص على مجاله ، وكان $oldsymbol{a}(oldsymbol{w}) = oldsymbol{\Lambda} - oldsymbol{w}$ بين أن الاقت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 79      |
|                                                          | متناقص في [٦٤٢]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
|                                                          | $\left[\frac{\pi}{\zeta}, \cdot\right]$ اِذا کان $\sigma(\omega) = $ جتا $\omega - \omega$ ر $\omega = (\omega)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.1.    |
|                                                          | أثبت أن الاقتران $(0+1)$ $(0)$ متزايد في تلك الفترة .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
|                                                          | $\left[rac{\pi}{\xi}$ اِذا کان $\mathfrak{o}$ (س $)$ =جاس $+$ جتاس $,$ س $\in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| ٠ + جتاس ٤١ في تلك                                       | أثبت أن ٢ (س) متزايد على مجاله ، ومن ذلك أثبت أن جا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.17    |
|                                                          | الفترة .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| — س <sup>۲</sup> ، أثبت أن الاقتران :                    | اذا کان $\mathcal{O}$ $(m)$ کثیر حدود متزاید علی ح ، هر $(m)=7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| [06                                                      | $ abla$ ل $(m)=\mathcal{O}'(m)+a$ $(m)	imes a$ متزاید $ abla$ س $\in$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.7.    |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |

# الدرس الثالث: القيم القصوى

| الجواب | السؤال                                                                                                        | السنة   |
|--------|---------------------------------------------------------------------------------------------------------------|---------|
|        | للاقتران ٠٠ (س) = ٥ – ٢س' قيمة عظمى في الفترة [٣٠٠] عندما                                                     |         |
| ٥      | $m= ?$ أ $\gamma$ ( $\gamma$ | 7٧      |
|        | ۱۱۱ کی طیفر                                                                                                   |         |
| د      | أكبر قيمة يأخذها الاقتران 0 (س) =جاس+٣ لكل س∈ع هي :                                                           | 7٧      |
|        | أ) ٢ (ب ٣ جـ) -٤ د) ٤                                                                                         | دراسات  |
|        | إذا كان للاقتران ٢ (س) قيمة صغرى محلية عند س =ج ، فإن إحدى                                                    |         |
|        | العبارات التالية صحيحة دائماً:                                                                                | Y • • A |
| د      | أ) $\upsilon(7) < صفر ب) \upsilon'(7) = \omega$                                                               | إكمال   |
|        | جـ) <i>ل "(ج) &gt; صفر د) (ج، ن (ج) )</i> نقطة حرجة                                                           |         |
|        | إذا كان الاقتران $arphi(m)$ متصلاً على [٥٤١] وكانت $arphi'(m)>٠$                                              |         |
|        | لجميع قيم س ∈]١٥٥[ فإن إحدى العبارات التالية صحيحة دائماً:                                                    |         |
| ب      | أ) لا يوجد للاقتران <i>u(س)</i> نقطة انعطاف في ]٥٠١[                                                          | 79      |
| •      | ب) للاقتران $v(m)$ قيمة عظمى عند $w=0$                                                                        |         |
|        | جـ) الاقتران مقعر للأعلى على [٥٤١]                                                                            |         |
|        | د) للاقتران $\mathcal{U}(m)$ قيمة عظمى عند $m=1$                                                              |         |

| الجواب | السؤال                                                                                                                                   | السنة   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        | إذا كان ٧ (س) اقتراناً معرفاً على [٣٠٠] وكانت                                                                                            |         |
| د      | v'(m) = (m-1)(m+1)، فإن مجموعة جميع قيم التي                                                                                             | 79      |
| 3      | يوجد عند كل منها قيمة حرجة للاقتران <b>ن (س</b> )هي :                                                                                    | 1       |
|        | اً) (۳۵۲۵۰) (ع ۲۵۱۰) ج) (۳۵۲۵۱ د) (۳۵۲۵۱)                                                                                                |         |
|        | إذا كان $v(m) = r^{m}$ أس وكان لمنحنى الاقتران $v(m) = r^{m}$                                                                            | 79      |
| ج      | محلية عند $	extit{w} = 1$ ، فإن قيمة الثابت أ $	extit{e}$                                                                                | إكمال   |
|        | اً) ۲   ب) – ۳                                                                                                                           | ر سے اِ |
|        | ا إذا كان $\mathfrak{O}(m)$ معرفاً على ع ، وكانت $\mathfrak{O}'(m) = \frac{m^{7} + 7m}{(m+7)^{7}}$                                       |         |
| د      | و ن ۱۲۰)<br>فإن عدد النقط الحرجة للاقتران ت (س) يساوي :                                                                                  | 7.17    |
|        | ر<br>أ)صفر ب) ۱                                                                                                                          |         |
|        | إذا كان ٢ (س) = [٢س - ٤] ، س ∈ [٢٠٠]، فإن جميع قيم س التي تكون                                                                           |         |
| ب      | عندها نقط حرجة للاقتران ٠٠(س)                                                                                                            | 7.14    |
|        | ۲،۱،۰ (ع ]۲،۰[(ج [۲،۰] (ب ۲،۰ (أ                                                                                                         |         |
|        | القيمة الصغرى المطلقة للاقتران $v\left( w ight) = w^{"} - w$ في الفترة                                                                   |         |
| †      | [۳۰۳] هی :                                                                                                                               | 7.14    |
|        | أ) – ۱۸ ب) – ۲ جـ ) – ۳۲ د) – ۳                                                                                                          |         |
|        | إذا كان $oldsymbol{v}(oldsymbol{w}) =  oldsymbol{w} - oldsymbol{V}  - oldsymbol{o}$ ، $oldsymbol{w} \in [-Y \circ Y]$ فإن القيمة المطلقة |         |
| ب      | العظمي للاقتران ٥ (س) في مجاله هي :                                                                                                      | 4.15    |
|        | أ) ۱ (ب ب) – ۵ جـ) – ۵ د) – ۹                                                                                                            |         |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | السنة         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| ب      | لیکن $\mathfrak{O}(m) = \sqrt{3 - m^7}$ ، $m \in [-7, 1]$ فإن قیمة $m$ التي یکون عندها للاقتران $\mathfrak{O}(m)$ قیمة عظمی مطلقة هي :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۲۰۱٦<br>إكمال |
| ٥      | $1 \geq w \geq 0$ $> 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ $= 0$ | ۲۰۱٦<br>إكمال |
| ţ      | ان مجموعة قيم س التي للاقتران $\mathfrak{O}(m) = \sqrt{m' - 7  nm}$ نقطا حرجة هي:  أ) {۱۲۰۰} ب) {۲۱۲،۰۰} جـ) {۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 • 1 7       |
| د      | إذا كان $\upsilon(m) = \sqrt{7 - m^7}$ ، معرفاً على الفترة $[-1.1]$ فإن القيمة الصغرى المطلقة هي :  أ) $\upsilon(1)$ ب) $\upsilon(1)$ ج) $\upsilon(-1)$ د) $\upsilon(-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y•1V          |
| f      | $1 \geq m \geq 1 - c$ $m \leq 1$ $ \begin{cases}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.17          |
| f      | إذا كان $\mathcal{U}(m)$ اقتراناً معرفاً على الفترة $[3,3]$ $\mathcal{U}'(m) = \frac{m-7}{m+1}$ ، فإن مجموعة قيم س التي يكون عندها نقطاً حرجة للاقتران $\mathcal{U}(m)$ هي: أ) $\{2,7,0\}$ ب) $\{-1,7,7,2\}$ ج) $\{2,7,0\}$ د) $\{7\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | الإكمال       |

| الجواب | السؤال                                                                                                                                                                                                                         | السنة                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| د      | إذا كان                                                                                                                                                                                                                        | الإكمال<br>٢٠١٧           |
| ح      | إذا كان $\mathfrak{O}(m)$ معرفا على الفترة [۳۰]، بحیث $\mathfrak{O}'(m) = \frac{m-7}{m+1}$ ، فإن مجموعة قیم $m$ التی یکون عندها للاقتران $\mathfrak{O}(m)$ نقطا حرجة أ) $\{700\}$ ب ب $\{-1000\}$ ج) $\{7000\}$ د) $\{-1000\}$ | 7.17                      |
| ب      | إذا كان $\mathfrak{O}(m) = + m^{-1} - m^{-1}$ ، وكان للاقتران $\mathfrak{O}(m)$ قيمة صغرى محلية عند $m = 1$ ، فإن قيمة الثابت $+ m = 1$ فإن $+ m = 1$ فإن $+ m = 1$ د) $+ m = 1$ د) $+ m = 1$                                  | ۲۰۱۸<br>الدورة<br>الثانية |
| ب      | إذا كان $\mathfrak{U}(m) = (m+7)^{\frac{1}{n}}$ ، معرفا على الفترة $[-13]$ فإن القيمة الصغرى المطلقة هي :                                                                                                                      | ۲۰۱۸<br>الدورة<br>الثانية |
| ح      | إذا كان $\mathcal{O}(m)=m'$ ، $m\in [-7^{*}]$ فإن القيمة العظمى المطلقة هى :                                                                                                                                                   | ۲۰۱۸<br>الدورة<br>الثالثة |
| ب      | إذا كان $\mathfrak{O}(m) = \sqrt{3m + m^7}$ فإن قيم $m$ التي يكون عندها للاقتران $\mathfrak{O}(m)$ نقط حرجة هي :  أ) $-7$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$                                                              | ۲۰۱۸<br>الدورة<br>الثالثة |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة                     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ب      | إذا كان $\mathfrak{U}(m)$ اقترانا كثير حدود من الدرجة الرابعة، فما أكبر عدد ممكن من النقاط الحرجة للاقتران $\mathfrak{U}(m)$ ?  أ) $\Upsilon$ ب) $\Upsilon$ د) $\Upsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.19                      |
| 5      | إذا كان $\mathcal{U}(m)$ اقترانا معرفا في $[-1:1]$ وكان $\mathcal{U}(m)$ اقترانا معرفا في $[-1:1]$ وكان $\mathcal{U}(1) = Y$ ، نهيا $\mathcal{U}(m) = 1$ فما العبارة الصحيحة فيما يأتى : أ) $\mathcal{U}(1)$ قيمة صغرى محلية $\mathcal{U}(1)$ قيمة صغرى محلية $\mathcal{U}(1)$ قيمة عظمى محلية $\mathcal{U}(1)$ قيمة عظمى محلية $\mathcal{U}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.19                      |
| ·      | إذا كان $\mathfrak{O}(m) = \sqrt{3m + m^7}$ فإن قيم $m$ التي يكون عندها للاقتران $\mathfrak{O}(m)$ نقط حرجة هي :   أ) $- \Upsilon$ ب $- \Upsilon$ حر $- \Upsilon$ عرون عندها للاقتران $\Upsilon$ التي يكون عندها للاقتران $\Upsilon$ فإن قيم $\Upsilon$ التي يكون عندها للاقتران $\Upsilon$ أ) $- \Upsilon$ بارد التي يكون عندها للاقتران $\Upsilon$ فإن قيم $\Upsilon$ أ) $- \Upsilon$ بارد التي يكون عندها للاقتران $\Upsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۲۰۱۹<br>الدورة<br>الثانية |
| ب      | إذا كان $v(w) = w^{7} - 7$ الورس) فما عدد القيم الحرجة للاقتران $v(w)$ على مجاله $v(w)$ على على على المحالة والمحالة والمحال  | 7.7.                      |
| ٥      | ما قيمة / قيم س التي يكون عندها للاقتران و التي يكون و التي | 7.7.                      |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | السنة                     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| د      | $   \left\{ \begin{array}{ll}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ۲۰۲۰<br>الدورة<br>الثانية |
| ب      | إذا كان $v'(w) = r(w+1)(w-1)^{r}$ فإن لمنحنى الاقتران $v(w)$ قيمة:  أ) عظمى محلية عند $w = -1$ $v(w) = -1$ | ۲۰۲۰<br>الدورة<br>الثانية |
| f      | إذا كان $v(w) = w \times a^w$ فما قيمة / قيم س الحرجة لمنحنى $v(w)$ ?  أ)-٢ ب)-١ جـ) ٠٠٠ -١ د)٠٠٠-٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲۰۲۰<br>الدورة<br>الثانية |

| الجواب                                                                                                                                                                              |    | السؤال                                                                                                                   | السنة       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------|-------------|
| <ul> <li>• متناقص عندماس</li> <li>• متناقص عندماس</li> <li>• عند س = • ۵۰ (•) = •</li> </ul>                                                                                        |    | ر 1 ( س ) =                                                                                                              | 7           |
| \$\mathcal{U}(\beta) = \mathcal{S} \ard\text{adds}\$         \$\mathcal{U}(\beta) = \earthcap\$ \text{adds}\$                                                                       |    | $     \left\{ \begin{array}{ccc}                                   $                                                     | ۲۰۰۷ دراسات |
| قیمة عظمی محلیة = ٦ عند<br>مة صغری محلیة =٢                                                                                                                                         |    | جد القيم القصوى المحلية للاقتران<br>ن(س)=س"-٣ س'+٦ ، س دع.                                                               | ۲۰۰۸        |
| $\begin{bmatrix} \frac{\pi}{\xi} \cdot \cdot \end{bmatrix}$ متزاید علی $\begin{bmatrix} \pi \cdot \frac{\pi}{\xi} \end{bmatrix}$ متناقص علی $\pi \cdot \frac{\pi}{\xi} \cdot = \pi$ | (0 | إذا كان $\sigma(m) =$                                                                                                    | 79          |
| ر [-۱،۱]<br>]- ∞۰- ۱] ∪ [۱،∞[<br>: -۱ قيمة صغرى محلية =                                                                                                                             |    | إذا كان $v(w) = \frac{w}{w'+1}$ جد (١) فترات التزايد والتناقص للاقتران $v(w)$ (٣) القيم الصغرى المحلية للاقتران $v(w)$ . | 7.1.        |

| جواب                         | ال                                                                                                                                                                  | السؤال                                                                                                                    | السنة                     |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ]<br>۰-۳]∪[۳-۵<br>صغری محلیة | مجالات التزاید والت مجالات التزاید والت متزاید في $[-7 \circ 1]$ متناقص في $[-\infty)$ القيم القصوى: $\sigma(-7) = \frac{1}{7}$ عظمى $\sigma(1) = \frac{1}{7}$ عظمى | جد مجالات التزايد والتناقص والقيم القصوى المحلية للاقتران $\frac{m+1}{m+1}$                                               | 7.11                      |
| عظمى محلية                   | متزاید فی $]-\infty$ ۱، متناقص $[-7]$ متناقص $(-1) = \frac{7}{7}$ م $(-7) = -0$ م                                                                                   | إذا كان ق(س)= $\frac{1}{m}m^{7}-m^{7}-m^{7}+3$ حيث س عدد حقيقي أوجد: $(1)$ مجالات التزايد والتناقص للاقتران $(2)$         | ۲۰۲۰<br>الدورة<br>الثانية |
| ا = ۲۲<br>ب = - ۲۲۶          | ِان <b>ں (س</b> ) قیمة                                                                                                                                              | إذا كان متوسط التغير للاقتران ت (س) = اس<br>الفترة [٣٠١] يساوي ٢٢ وكان لمنحنى الاقتر<br>حرجة عند س = ٢ أوجد قيمة كل من ١، | ۲۰۲۰<br>الدورة<br>الثانية |

## الدرس الرابع: التقعر ونقط الانعطاف

| السؤال                                                                                                                                                      | السنة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| يقع الاقتران فوق جميع مماساته عندما يكون الاقتران                                                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| أ) مقعراً للأعلى ب) مقعراً للأسفل جـ) متزايداً د) متناقصاً                                                                                                  | دراسات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| إذا كان • (س) اقتران كثير حدود من الدرجة الثانية فإن الاقتران 🖰 :                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| أ) لا توجد له نقاط انعطاف ب) توجد له نقطة انعطاف واحدة فقط                                                                                                  | 7٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| جـ) يوجد له نقطتي انعطاف                                                                                                                                    | دراسات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| الأقل                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \dot{\psi} $ إذا كان $\psi(\omega) = \omega$ إذا كان الم                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| أ) $\upsilon'(\cdot)$ غير موجودة $\upsilon'(\cdot)$ قيمة عظمى                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| جـ) $\upsilon(\cdot)$ قيمة صغرى محلية دا ( $\upsilon(\cdot)$ ) نقطة انعطاف                                                                                  | دراسات                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| إذا كانت النقطة (٢٠١) نقطة انعطاف لمنحني الاقتران ٥٠ (س) وكانت                                                                                              | 7٧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\mathfrak{S}=\mathfrak{S}$ ل $\mathfrak{S}=\mathfrak{S}$ حيث ل ثابت فإن $\mathfrak{S}=\mathfrak{S}$                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| اً) ٤  ب) ٢ جـ ١٢ د) ٢٤                                                                                                                                     | إكمال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[-1 	ag{1}] \cdot oldsymbol{v}^{\prime\prime}$ اذا كان $oldsymbol{v}^{\prime\prime}$ معرفاً على $[-1 	ag{1}] \cdot oldsymbol{v}^{\prime\prime}$ معرفاً على |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ويوجد عند س = ١ نقطة انعطاف فإن إحدى العبارات التالية صحيحة دائماً:                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                             | Y • • A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • • • • • • • • • • • • • • • • • • •                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <del>"</del>                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                             | يقع الاقتران فوق جميع مماساته عندما يكون الاقتران أوق جميع مماساته عندما يكون الاقتران أمقعراً للأعلى ب) مقعراً للأسفل جـ) متزايداً د) متناقصاً إذا كان $\sigma$ ( $m$ ) اقتران كثير حدود من الدرجة الثانية فإن الاقتران $\sigma$ :  أ) لا توجد له نقاط انعطاف د) توجد له نقطة انعطاف واحدة فقط جـ) يوجد له نقطتي انعطاف د) توجد له نقطة انعطاف واحدة على الأقل أن $\sigma$ ( $m$ ) = $m$ $ m $ فإن:  أ) $\sigma$ ( $\sigma$ ) غير موجودة بالأقل أن $\sigma$ ( $\sigma$ ) غير موجودة بالأقران $\sigma$ ( $\sigma$ ) نقطة انعطاف انعطاف أذا كانت النقطة ( $\sigma$ ) نقطة انعطاف لمنحنى الاقتران $\sigma$ ( $\sigma$ ) وكانت $\sigma$ ( $\sigma$ ) = $\sigma$ $\sigma$ ( $\sigma$ ) معرفاً على أصرفاً عل |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | السنة        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ٤      | إذا كان للاقتران $u(w) = 1$ $w' + w''$ نقطة انعطاف عندما $w = -1$ فإن قيمة الثابت أتساوي : $\frac{\pi}{7} \qquad \qquad$                                                                                                                                                                                                                                                                                                             | ۲۰۱۰         |
| ٤      | إذا كان $\mathcal{O}(\mathcal{O})$ متصلا على [١٠٣] ، وكان $\mathcal{O}''(\mathcal{O}) < \cdot$ لجميع قيم $\mathcal{O}(\mathcal{O})$ $\mathcal{O}(\mathcal{O})$ له ثلاث نقاط حرجة فقط في [١٠٣] وكان $\mathcal{O}'(\Upsilon) = \cdot$ فإن :  أ) $\mathcal{O}(\Upsilon) > \cdot \cdot \cdot$ ب ب $\mathcal{O}(\Upsilon) > \mathcal{O}(\Upsilon)$ أ $\mathcal{O}(\Upsilon) > \cdot \cdot \cdot \cdot$ د) $\mathcal{O}(\Upsilon) > \mathcal{O}(\Upsilon)$ جـ) $\mathcal{O}(\Upsilon) = \mathcal{O}(\Upsilon)$ د) $\mathcal{O}(\Upsilon) > \mathcal{O}(\Upsilon)$ | 7.18         |
| ب      | إذا كان الشكل المجاور يمثل منحنى 0 '(س)<br>فإن نقطة انعطاف منحنى 0 (س)هي:<br>أ) (١٥-٢) ب) (١٥٠٥))<br>جـ) (٣٥٠) د) (-١٠٠)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.18         |
| د      | اد، ۱) هى نقطة انعطاف لمنحنى احدى الاقترانات الآتية :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲۰۱٤ الاكمال |
| ħ      | إذا كان لمنحنى الاقتران $\mathfrak{O}(m) = m^7 + \gamma m^7 - p m$ نقطة انعطاف عند $m = -1$ فإن قيمة الثابت $\gamma$ تساوي : $\eta$                                                                                                                                                                                                                                                                                                                                                          | 7.10         |

| الجواب   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | السنة |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <b>E</b> | الشكل المجاور يبين منحنى $U'(w)$ إن مجموعة حل المتباينة $U''(w) > \cdot $ هي:  أ) $ 1 \cdot  ^{2}$ (س) $ 1 \cdot  ^{2}$ (ص) $ 1 \cdot  ^{2}$ (ص) $ 1 \cdot  ^{2}$ (ح) $ 1 \cdot  ^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.10  |
| <b>Č</b> | بالاعتماد على الشكل المجاور والذي يمثل منحنى ت (س) فإن النقطة التي يكون عندها " " " النقطة التي يكون عندها " " " موجبتين هي : أ) م ب) ن ج) هـ د)و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.17  |
| د        | إذا كان $\sigma(m) = \frac{1}{\gamma}m + $ جتاس معرفا على الفترة $\pi(s)$ فإن منحنى و $\pi(m)$ يكون مقعرا للأسفل في : $\frac{\pi}{\gamma} \left[ \int_{\gamma} \pi(s) \left[ \int$ | 7.17  |
| ج        | إذا كان $\mathcal{U}(m)$ كثير حدود وكان الشكل المجاور يبين إشارة $\mathcal{U}'(m)$ الشكل المجاور يبين إشارة $\mathcal{U}'(m)$ • $\mathbf{U}'(m)$ وكان $\mathcal{U}'(m)$ • $\mathbf{U}'(m)$ فإن العبارة الصحيحة دائماً هي : فإن العبارة الصحيحة دائماً هي : • $\mathbf{U}'(m)$ قيمة صغرى محلية • $\mathbf{U}'(m)$ قيمة عظمى محلية • $\mathbf{U}(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.17  |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                    | السنة                     |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ţ      | الشكل المجاور يمثل منحنى 0'(س) في الفترة [-٥٠٣] فإن منحنى ٥ (س) يكون :  أ) مقعر للأسفل في الفترة [٥٠٠] ب) مقعر للأعلى في الفترة [-٣٠٣] جـ) متناقصاً في الفترة [٥٠٠] د) متناقصاً في الفترة [٠٠٠]                                                                                                                           | 7.17                      |
| ب      | إذا كان $\upsilon(m) = $ جتا $m$ ، معرفا على $\left[\frac{\pi}{\gamma}, \frac{\pi}{\gamma}\right]$ فإن قيمة $m$ التي يكون عندها نقط انعطاف هي : $\frac{\pi}{\gamma}$ د $\frac{\pi}{\gamma}$ د $\frac{\pi}{\gamma}$ د $\frac{\pi}{\gamma}$ د $\frac{\pi}{\gamma}$                                                          | 7.17                      |
| ب      | الشكل المجاور يمثل منحني 0 '(س) إن نقطة الانعطاف لمنحني 0 (س)هي: أ) (١،٥ (١)) ب (٥،٥ (٥)) ج) (٢،٥ (٢)) د) لا يوجد له نقطة انعطاف                                                                                                                                                                                          | ۲۰۱۷<br>الدورة<br>الثانية |
| ٤      | إذا كان • (س) كثير حدود وكانت زاوية ميل المماس لمنحنى • (س) عند أي نقطة عليه في الفترة [٢٥] هي زاوية منفرجة فإن العبارة الصحيحة فيما يلي هي أن (س) متناقص في الفترة [٢٥٥] ب) • (س) متزايد في الفترة [٢٥٥] ب) • (س) مقعر للأعلى في الفترة [٢٥٥] جـ) • (س) مقعر للأعلى في الفترة [٢٥٥] د) • (س) مقعر للأسفل في الفترة [٢٥٥] | ۲۰۱۷<br>الدورة<br>الثانية |

| الجواب | السؤال                                                                                                                                           | السنة   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|        | إذا كان $\sigma$ (س) = $\frac{1}{\pi}$ س + س - ٢س فإن منحنى $\sigma$ (س) يقع فوق جميع                                                            | 7.17    |
| Ť      | مماساته على الفترة :                                                                                                                             | الدورة  |
|        | ا/ د∞ −[ (د ا ب ] ∞ د/ (ر ب ] ∞ د/ −[ (ا                                                                                                         | الثانية |
|        | إذا كان ق (س) متصلا على الفترة [٣٠١] ، ق"(س) < ٠                                                                                                 | 7.17    |
| ج      | : فإن العبارة الصحيحة التالية $(Y)'$ $\mathcal{U}(Y)=0$ فإن العبارة الصحيحة التالية                                                              | الدورة  |
|        | أ) <i>ن</i> (۲) صغرى محلية                                                                                                                       | الثانية |
|        | جـ) v (۲) عظمى محلية د) v (س) متزايد على الفترة                                                                                                  |         |
| ļ<br>Ī | إذا كان $u(m) = m$ ، فإن العبارة الصحيحة فيما يلى هى:                                                                                            |         |
|        | أ)(۱٬۰۰) نقطة انعطاف بان (۰) عظمى محلية                                                                                                          | 7.17    |
|        | ج) v(٠) صغري محلية                                                                                                                               |         |
|        | إذا كانت النقطتان $(oldsymbol{\cdot})$ ، $(oldsymbol{\cdot})$ هما نقطتا انعطاف لمنحنى                                                            |         |
| ج      | $oldsymbol{v}_{0}$ ى وكان $oldsymbol{v}_{0}^{\prime}$ $oldsymbol{v}_{0}^{\prime}$ $oldsymbol{v}_{0}^{\prime}$ فإن قيمة الثابت ك هى :             | Y • 1 A |
|        | أ) <i>- ۳ ب) ۲ جـ ) ۳</i>                                                                                                                        |         |
|        | الشكل المقابل يمثل منحني $oldsymbol{v}''(oldsymbol{w})$ حيث $oldsymbol{v}(oldsymbol{w})$ کثیر الحدود $oldsymbol{v}''(oldsymbol{v})=oldsymbol{v}$ |         |
|        | فإن العبارة الصحيحة هي : ق" (س)                                                                                                                  |         |
| ج      | اً) <b>υ</b> (۳) قیمة صغری محلیة                                                                                                                 | Y•1A    |
|        | ب) 0 (س) مقعر للأعلى في ]١٥٥[                                                                                                                    |         |
|        | ج) ن (س) مقعر للأعلى في ]؟،٥[<br>                                                                                                                |         |
|        | د) ق (س)متناقص في [٤، ٥]                                                                                                                         |         |

| الجواب   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ب        | $\frac{\pi}{Y}$ نقطة الانعطاف لمنحنى $\mathcal{O}(m)$ جما $\frac{W}{Y}$ في الفترة $\frac{W}{Y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۲٠١٨    |
| •        | تكون عندما <b>س</b> = ؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | الدورة  |
|          | $\frac{\pi^{\circ}}{7}$ (ع $\frac{\pi^{\gamma}}{r}$ (ج $\frac{\pi}{r}$ (أ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | الثانية |
|          | إذا كان $oldsymbol{u}(oldsymbol{w})$ اقترانا متصلا في $oldsymbol{[\xi(1)]}$ ، وكانت $oldsymbol{u}''$ الجميع                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|          | س∈]ا٤٤١[، وكان للاقتران ٤ (س) ثلاث نقاط حرجة فقط بحيث                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| د        | v=(r)'فما العبارة الصحيحة مما يأتى ؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.19    |
|          | $(\xi)\upsilon = (1)\upsilon ($ ب $(\xi)\upsilon = (\xi)\upsilon ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
|          | $(\Upsilon) \cup (\Upsilon) $ |         |
|          | إذا كان $\mathfrak{O}(m)=m^{"}-m^{"}$ ى $m\in [-m]$ ، ما احداثيات نقطة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| ب        | الانعطاف لمنحني الاقتران ٥٠ (س)؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.19    |
|          | (۱۰۵۰) ( (۲-۵۱) ( ب (۲-۱۵) ( ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|          | ا إذا كان $v''(w) = (w^{2}+0)(v-w)^{\circ}(w-2)^{\circ}$ ، فما مجموعة قيم س                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.19    |
| ح        | الحقيقية التي يكون عندها نقط انعطاف للاقتران ق (س)؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | الدورة  |
|          | (٥-،٤،٣) (ع - (٣) (ب {٤،٣) (أ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | الثانية |
|          | الشكل المجاور يمثل منحنيي الاقترانين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.19    |
| <i>ن</i> | ى (س) ، هـ (س) فماذا يكون الاقتران                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | الدورة  |
| •        | $(\mathbf{a}-\mathbf{v})(\mathbf{w})$ في الفترة $[-\mathbf{w},\mathbf{v}]$ ؟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | الثانية |
|          | أ)متناقصا ب)متزايدا جـ)ثابتا د) مقعرا للأعلى                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u></u> |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة                     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ţ      | إذا كان $v(m) = m^7 + b m^7 - p m ، b \in 3 ، اقترانا له نقطة انعطاف عند m = -1 ، فما ظل زاوية الانعطاف ؟   أ) v = -1 د) v = -1 د) v = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲۰۱۹<br>الدورة<br>الثانية |
| ب      | الشكل المجاور يمثل منحنى الاقتران $v(w)$ معتمدا عليه ما العبارة الصحيحة فيما يلى ؟  ما العبارة الصحيحة فيما يلى ؟  رس) $v(v) < (v) < (v)$ رس) $v(v) < (v) < (v)$ د) $v'(w) > (v) < (v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲۰۱۹<br>الدورة<br>الثانية |
| ٤      | ما المجال الذي يقع فيه منحنى الاقتران $v(w)$ تحت جميع مماساته $v(w)$ تحت جميع مماساته $v(w)$ | 7.7.                      |
| ب      | إذا كان $u(m)=\sqrt[N]{7-7m}+7$ ، فما قياس زاوية الانعطاف لمنحنى الاقتران $u(m)$ إن وجدت؟ أ) ، $u(m)$ أن $u(m)$ لمنطاف أ) ، $u(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7.                      |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                           | السنة                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| د      | إذا كان لمنحنى الاقتران $v(w) =$                                                                                                                                                                                                                                                                                                                                                                 | ۲۰۲۰                      |
| ح      | إذا كان ن (س) = ١٨ – ٣٧ – جا٢ س<br>فأي من الخصائص التالية تتحقق في منحنى ن (س) ، √س∈ع<br>أ)متزايد ب) متناقص جـ)مقعر للأسفل د)مقعر<br>للأعلى                                                                                                                                                                                                                                                      | 7.7.                      |
| 5      | إذا كان $\mathfrak O(w)$ اقتران متصل على ح ، وكان $\mathfrak O(w)$ اقتران متصل على ح ، وكان $\mathfrak O(w)$ الاقتران $\mathfrak O(w)$ ؛ الاقتران $\mathfrak O(w)$ ؟ ما قياس زاوية الانعطاف لمنحنى المور $\pi$ د) $\pi$ د) $\pi$ د) $\pi$ المور $\pi$ د) $\pi$ د) $\pi$                                                                                                                          | ۲۰۲۰<br>الدورة<br>الثانية |
| ب      | بالاعتماد على الشكل المجاور ، الذي يمثل منحنى $\mathfrak{O}(m)$ فما قيمة النقاط/ النقطة التي يكون عندها عندها $\mathfrak{O}(m) = \mathfrak{o}(m)$ سالب ؟ $\mathfrak{O}(m) = \mathfrak{o}(m)$ سالب ؟ $\mathfrak{O}(m) = \mathfrak{o}(m)$ ل $\mathfrak{O}(m) = \mathfrak{o}(m)$ ل $\mathfrak{o}(m) = \mathfrak{o}(m)$ هه $\mathfrak{o}(m) = \mathfrak{o}(m)$ ل $\mathfrak{o}(m) = \mathfrak{o}(m)$ | ۲۰۲۰<br>الدورة<br>الثانية |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | السنة                     |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| f      | يمثل الشكل المجاور منحنى ت (س) إذا كان ت (۲) = • فماذا تمثل النقطة (۲،۵ (۲)) ؟  أ) عظمى محلية  ب) صغرى محلية  جـ) ليست حرجة لمنحنى ت (س)  د) نقطة انعطاف                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ۲۰۲۰<br>الدورة<br>الثانية |
| د      | إذا كان $\upsilon(w) = \frac{\upsilon(w)}{w^7 - Y}$ حيث $w^7 \neq Y$ وكان لمنحنى $\upsilon(w)$ معاكساً أفقياً عند النقطة (١٠٢) فما قيمة $\upsilon(Y)$ ?  أ) $-Y$ ب) $(Y)$ حيث $(Y)$ عند النقطة (١٠٢) فما قيمة النقطة (١٠٢) فما قيمة عند النقطة (١٠٢) فما قيمة (١٠٢) ف | ۲۰۲۰<br>الدورة<br>الثانية |
| ج      | ما قیمة الثابت جـ الذي يجعل لمنحنی $v = w^{-1} + z$ نقطة انعطاف عند $v = -1$ الله عند $v = -1$ ما الله عند $v = -1$ الله عند $v = -1$ ما الله عند $v = -1$ مند $v =$                                    | ۲۰۲۰<br>الدورة<br>الثانية |

| الجواب                                            | السؤال                                                                                                                                                          | السنة   |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| مقعر لأعلى ]٠٠℃[                                  | حدد فترات التقعر للأعلى وللأسفل للاقتران                                                                                                                        |         |
| مقعر لأسفل ]-∞، •[                                | <b>7</b> + <b>7676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767676767767677677677677677767767776777777777</b> 7 | Y • • V |
| نقطة الانعطاف (۲٬۰)                               | ثم أوجد نقطة الانعطاف ( إن وجدت) .                                                                                                                              |         |
| $\left] \frac{\pi}{7}$ مقعر لأسفل $\frac{\pi}{7}$ | جد مجالات التقعر للأعلى وللأسفل للاقتران                                                                                                                        | ۲۰۰۸    |
| $\boxed{\pi^{2} \frac{\pi}{Y}}$ ولأعلى ولأعلى     | $\pi$ باس في $\pi$ ا $\pi$ ا $\pi$ ا $\pi$                                                                                                                      | , ,     |
| متزاید علی ]−∞،۰]∪[٤،∞[                           | إذا كان $v(m) = m^{7} - rm^{7}$ جد للاقتران $v(m)$                                                                                                              |         |
| متناقص على [٤٠٠]                                  | كلاً من :                                                                                                                                                       | ۲۰۰۸    |
| مقعر لأعلى ]٢،∞[                                  | ١) مجالات التزايد والتناقص والقيم القصوي                                                                                                                        | إكمال   |
| مقعر لأسفل ]−∞،۲[                                 | المحلية .                                                                                                                                                       |         |
| مقعر لأعلى في الفترة ]-٣٤٣[                       | $\frac{\omega}{\varphi} = \frac{\omega'(\omega)}{\varphi}$ إذا كان $\omega(\omega)$ معرفاً على $\omega'$                                                        | 79      |
|                                                   | جد مجالات التقعر للأعلى للاقتران · (س)                                                                                                                          |         |
| زاید عندما <b>س</b> < - ۲ ، س > ۲                 | للاقتران ٢ (س) = ٢س - ٢ ٢س ، سرح ١)من                                                                                                                           |         |
| ص على [-٢٠٢]                                      | جد:                                                                                                                                                             | 79      |
| نعر لأعلى <sup>س</sup> > ·                        | ١) مجالات التزايد والتناقص والقيم القصوى ٢)ما                                                                                                                   | إكمال   |
| ِلأسفل <b>س</b> < ٠                               | ٢) مجالات التقعر للأعلى وللأسفل                                                                                                                                 |         |

| الجواب                                                                                                      | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | السنة         |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| مقعر للأعلى على الفترة<br>]-∞،-7[،]٢،∞[<br>مقعر للأسفل]-٣،٣[<br>للاقتران نقاط انعطاف عندما<br>س=٢،س=-٢      | معتمداً على الشكل المجاور والذي يمثل منحنى الاقتران منحنى الاقتران ك'(س) جد:  1) مجالات التقعر للأعلى وللأسفل لمنحنى الاقتران ٢) الإحداثيات السينية لنقاط الانعطاف .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1.          |
| <ul> <li>٣)= -٥٠ قيمة صغرى</li> <li>لية.</li> <li>رلأعلى ٣ &gt; ٢٥٣ &lt; ٠</li> <li>رلأسفل ]٠٠٢[</li> </ul> | إذا كان $\sigma(m) = \frac{1}{2}m^2 - m^2 + 7 جلا:$ (۱) القيم القصوى للاقتران $\sigma(m)$ مقع (س) التقعر للأعلى و الأسفل للاقتران $\sigma(m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ۲۰۱۰<br>إكمال |
| للأعلى في<br>[2]-∞،۲[<br>سفل في ۲،۳[<br>سفل في ا۲،۳<br>داثيات السينية لنقاط الانعطاف<br>س=۲،س=۳             | إذا كان $\mathfrak{O}(m) = m^{1} - 1  m^{7} + 77  m^{7}$ جد:  (۱) مجالات التقعر للأعلى وللأسفل للاقتران.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.11          |
| ) = ٠ عظمى محلية<br>= -٤ صغرى محلية<br>لأعلى على ]١٥٥ [<br>فل على ]-٥٠ [                                    | $ U(\operatorname{ext}(0, \mathcal{O}(\mathcal{O})) = U(\mathcal{O}(\mathcal{O})) + C: $ $ U(ext(0, \mathcal{O}(\mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext(0, \mathcal{O})) + C: $ $ U(ext(0, \mathcal{O})) = U(ext$ | 7 • 1 7       |

| الجواب                                                                                                                                                                                                                                                                                                 | السؤال                                                                                                                                                                | السنة           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| ۱)متزاید ]۰۰∞[ متناقص]−∞۰۰]<br>۲) مقعرللأعلى ]−۱۰۱[                                                                                                                                                                                                                                                    | $     \frac{w}{1+v} = \frac{w}{w'+1} $ إذا كان $v'(w) = \frac{w'+1}{w'+1}$ جد 1) مجالات التزايد والتناقص للاقتران                                                     | 7.17            |
| مقعرللأسفل ]١٠٥٥[،]-٥٥- [[<br>٣) س = ± ١                                                                                                                                                                                                                                                               | ں (س)<br>٢) مجالات التقعر للأعلى وللاسفل<br>للاقتران                                                                                                                  |                 |
| لقيم العظمى والصغرى: $\left( \frac{\pi}{\Upsilon}, \frac{\pi}{\Upsilon} \right)$ ، صغرى $\left( \frac{\pi}{\Upsilon}, \frac{\pi}{\Upsilon} \right)$ ترات التقعر: $\left[ \frac{\pi}{\Upsilon}, \frac{\pi}{\Upsilon} \right]$ ، مقعر للأسفل $\left[ \frac{\pi}{\Upsilon}, \frac{\pi}{\Upsilon} \right]$ | عظم علام العظم و الصغرى المحلية .                                                                                                                                     | 7 • 1 7         |
| ↓ (w) ∪<br>→ · < (≈)'(                                                                                                                                                                                                                                                                                 | الشكل المجاور يمثل جزءاً من منحنى الاقتران كثير الحدود $\upsilon$ ( $\upsilon$ ) فإذا كان $\gamma(\upsilon) = \upsilon(\upsilon) \times \upsilon'(\upsilon)$ بين أن   | 7.17            |
| <ul> <li>١) القيم القصوى:</li> <li>٥ ( - ٣ ) = - ١٣,٥ - صغرى محلية</li> <li>٢ ) فترات التقعر:</li> <li>مقعر لأعلى ] - ∞ - ٢[٤]٠٠ ∞ [</li> <li>مقعر لاسفل] - ٢٠٠ [</li> </ul>                                                                                                                           | إذا كان $\mathfrak{O}(m) = \frac{1}{7}m^4 + 7m^7$ ، $m \in 3$ جد:  (۱) القيم الصغرى والعظمى المحلية $\mathfrak{O}(m)$ (۳) فترات تقعر $\mathfrak{O}(m)$ للأعلى وللأسفل | ۲۰۱۳<br>الإكمال |

| الجواب                                                                                                                                                                                                                                                                                                                                                                                                        | السؤال                                                                                                                                                                                                                                          | السنة             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| $T + \omega T - T\omega \frac{1}{\xi} = (\omega) \upsilon$                                                                                                                                                                                                                                                                                                                                                    | إذا كان ت (س) كثير حدود من الدرجة الثالثة جد قاعدة الاقتران ت (س) إذا علمت أن (٢٠-١) نقطة قيمة صغرى محلية وأن (٠، ٣) نقطة انعطاف للاقتران ت (س).                                                                                                | 7.18              |
| $\begin{bmatrix} \frac{\pi}{7} \\ 1 \end{bmatrix}$ متزایدعلی الفترة $\begin{bmatrix} \frac{\pi}{7} \\ 1 \end{bmatrix}$ $\begin{bmatrix} \frac{\pi}{5} \\ \frac{\pi}{7} \end{bmatrix}$ $\begin{bmatrix} \frac{\pi}{5} \\ \frac{\pi}{7} \end{bmatrix}$ مقعر لأسفل $\begin{bmatrix} \frac{\pi}{5} \\ \frac{\pi}{7} \end{bmatrix}$ $\begin{bmatrix} \frac{\pi}{5} \\ \frac{\pi}{7} \end{bmatrix}$ (1) متزاید [۳۵] | إذا كان $\mathfrak{O}(m) = Y + $ جا $m$ ، $m \in \left[\frac{\pi}{Y}, \frac{\pi}{Y}\right]$ جد:  (۱) مجالات التزايد والتناقص للاقتران $\mathfrak{O}(m)$ (۳) مجالات التقعر لأعلى ولأسفل لمنحنى  (س)                                              | ۲۰۱٤<br>الإكمال   |
| متناقص ]- ١٤∞ [٣٥∞ [<br>٢) مقعر لأعلى ]- ٢٤٠٠ [<br>مقعر لأسفل ]٢٠٠٠ [<br>نقطة الانعطاف (٢٠-٢)                                                                                                                                                                                                                                                                                                                 | إذا كان $\mathfrak{O}(m) = 7m^7 - m^7 - 9m$ جد:  1) مجالات التزايد والتناقص للاقتران $\mathfrak{O}(m)$ 1) مجالات التقعر ونقط الانعطاف للاقتران $\mathfrak{O}(m)$                                                                                | ۲۰۱٤<br>إكمال ضفة |
| متزاید] $-\infty$ ا متزاید] $-\infty$ ا متناقص [۱ $\infty$ [ $0$ (۱) = ۱ قیمة عظمی محلیة مقعر لأعلی $0$ ( $0$ ) $0$ ( $0$ ) $0$ ( $0$ ) $0$ ( $0$ ) $0$ ( $0$ ) $0$ 0 $0$ 0 $0$ 0 $0$ 0 $0$ 0 $0$ 0 $0$ 0                                                                                                                                                                                                     | إذا كان $\mathfrak{O}(m) = 3m^7 - 7m^4$ ، $m \in 3$ :  (1) عين مجالات التزايد والتناقص للاقتران $\mathfrak{O}(m)$ (2) اوجد القيم القصوى المحلية للاقتران $\mathfrak{O}(m)$ (3) عين مجالات التقعر للأعلى وللأسفل للاقتران  (4) $\mathfrak{O}(m)$ | 7.10              |

| الجواب                                                            | السؤال                                                                                                                                                                                                                       | السنة        |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ۱) تا (۱) = ۱ قیمة عظمی محلیة                                     | إذا كان ك(س) = س <sup>¬</sup> – ٣س <sup>¬</sup> + ١ فأوجد :                                                                                                                                                                  |              |
| u(۲)=۱ قیمة صغری محلیة                                            | ۱) القيم القصوي للاقتران ق (س)                                                                                                                                                                                               | 7.10         |
| ٢) مقعر لأسفل ]-∞، [[                                             | ٢) مجالات التقعر للأعلى وللأسفل للاقتران                                                                                                                                                                                     | إكمال        |
| مقعر لأعلى ]١٤∞[                                                  | ں (س)                                                                                                                                                                                                                        |              |
| <ul> <li>(۱) متناقص [-۲۰۰] (۲۰۵]         متناقید ]۰،۰π[</li></ul> | إذا كان $\sigma(w) = \Upsilon w' - w''$ $w \in [\Upsilon'' \circ ]$ أوجد:  1) مجالات التزايد والتناقص للاقتران $\sigma(w)$ 1) القيم القصوى المحلية للاقتران $\sigma(w)$ 1) مجالات التقعر للأعلى وللأسفل للاقتران $\sigma(w)$ | <b>۲・</b> 1٦ |
| (w) (w) (o) (o) (o) (o) (o) (o) (o) (o) (o) (o                    | الشكل المجاور يبين منحنيي الاقترانين<br>الشكل المعرفين على [أ،ب]           المعرفين على [أ،ب]           بين أن الاقتران هرس)           اقتران متزايد                                                                         | 7.17         |

| الجواب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | السؤال                                                                                                                                                                                                                                                                                                                    | السنة                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ۱) متناقص $[-7:\cdot]\cup[7:7]$ متزاید $[\cdot:7]$ متزاید $[\cdot:7]$ $(-7)=0$ عظمی محلیة $(-7)=0$ $(-7)=0$ عغری محلیة $(-7)=0$ $(-7)=0$ مقعر $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ $(-7)=0$ | ليكن $\sigma(m) = \Gamma m' - \Gamma m''$ معرفاً على  ]- $\Gamma \kappa \Gamma$ فأوجد:  1) مجالات التزايد والتناقص للاقتران $\sigma(m)$ 1) القيم العظمى والصغرى المحلية للاقتران  2) القيم التقعر للأعلى وللأسفل للاقتران  3) نقط الانعطاف                                                                                | X • • ×                   |
| $\frac{1}{\frac{\pi r}{r}} \frac{1}{\pi r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الشكل المقابل يمثل منحنى $\sigma(m)$ في الفترة $\left[\frac{\pi}{7}, \frac{\pi}{7}\right]$ ، أثبت أن : الاقتران $a(m)$ مقعر للأعلى في تلك الفترة علما بأن $a(m) = 0$ $a(m)$                                                                                                                                               | 7.17                      |
| <ul> <li>۱) متزاید [۲،∞[ متناقص ]-∞،۲]</li> <li>۲)صغری (۲،-۳۲)</li> <li>۳)مقعر لاسفل ]-∞، [،]٤،∞[ مقعر لأعلی ]۰،٤[</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | إذا كان $v(m) = m^4 - \lambda m^7$ معرفاً على ح فأوجد:  (۱) مجالات التزايد والتناقص للاقتران $v(m)$ (س)  (اس)  (اس) | ۲۰۱۸<br>الدورة<br>الثانية |

| الجواب                                                       |                                                                                                | السؤال                                                                                                                                                                                                             | السنة                     |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| )=٥ عظمى محلية<br>يى محلية ومطلقة<br>مطلقة (٢٠٢) نقطة انعطاف | متزاید فی [۳]<br>۲) القیم القص<br>۱۵) = ۶، ۱۵ (۵<br>۱۵) = ۰ صغر<br>۱۵ (۵) عظمی<br>۳) مجالات ال | إذا كان ١٥ (س) = س - ٦س + ٩س ،  س ﴿ [٥٠١] أوجد:  ١) مجالات التزايد والتناقص للاقتران (س) ٢) القيم القصوى المحلية والمطلقة للاقتران ٣) مجالات التقعر للأعلى وللأسفل للاقتران ٤) نقط الانعطاف لمنحنى للاقتران ١٠ (س) | <b>۲・</b> 19              |
| 7 & A                                                        | (.                                                                                             | إذا كان للاقتران $\mathfrak{O}(m) = m^3 - 3m^7 + 2m^7$ نقطة انعطاف أفقى هى النقطة (٢٠١) وكان $3(m) = 2m^7$                                                                                                         | 7.19                      |
| ۱۰، ۱۰(۲)=۹۰ عظمی محلیة<br>۱۰، ۱۰(۳)=-۲۲ صغری محلیة          | متزايد<br>متناقص<br>۲)القيم القص<br>(-1)=<br>۳)مجالات ال                                       | إذاكان<br>(س)=س"- ٣س"- ٩س+٥، س∈ [-٦،٢]<br>فأوجد:<br>(١) مجالات التزايد والتناقص للاقتران (س)<br>٢) القيم القصوى المحلية للاقتران (س)<br>٣) مجالات التقعر للأعلى وللأسفل للاقتران<br>و (س)                          | ۲۰۱۹<br>الدورة<br>الثانية |

| الجواب                                                                                                                                                                                                                                                                                                                                                        | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | السنة                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| $ \xi + \omega + ^{\Upsilon} \omega \Upsilon - ^{\Upsilon} \omega = (\omega) $ $ \int_{0}^{0} \pi \frac{\pi}{\xi} \left[ - \sqrt{\frac{\pi}{\xi}} \right] \frac{\pi}{\xi} \sqrt{\frac{\pi}{\xi}} \left[ - \sqrt{\frac{\pi}{\xi}} \right] \frac{\pi}{\xi} \sqrt{\frac{\pi}{\xi}} $ $ \lambda = \left( \frac{\pi}{\xi} \right) U $ $ \frac{\pi}{\xi} = \Delta $ | إذاكان $v(w) = w^{7} + vw^{7} + sw + s > v > s < 0$ بحیث $v(v) = s$ و كان للاقتران $v(w)$ نقطة انعطاف عند $v(w) = s$ و معادلة المماس لمنحنى الاقتران $v(w)$ عند نقطة الانعطاف هي $v(w) = v(w)$ عند نقطة الانعطاف هي $v(w) = v(w)$ أو جد قاعدة الاقتران $v(w) = \frac{1}{7} + s^{7} + s^$ | ۲۰۱۹<br>الدورة<br>الثانية |
| مقعر لأسفل $]\cdot \sim \infty$ مقعر لأعلى $]-\infty \sim \infty$ ومقعر لأعلى $[0, 1]$ نقطة الانعطاف $[0, 1]$ هو $[0, 1]$                                                                                                                                                                                                                                     | إذا كانت س (س) = تهاس + ۲ أوجد:  ۱) مجالات التقعر للأعلى وللأسفل للاقتران ۲) نقطة / نقاط الانعطاف (إن وجدت) ۳)قياس زاوية / زوايا الانعطاف (إن وجدت)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۲۰۲۰<br>الدورة<br>الثانية |

## الدرس الخامس: تطبيقات على القيم القصوى

## أجب عن الأسئلة التالية:

| الجواب           | السؤال                                                                                | السنة  |
|------------------|---------------------------------------------------------------------------------------|--------|
| ۲۰۰              | أوجد مساحة أكبر مستطيل يمكن رسمه داخل دائرة نصف قطرها ١٠ سم                           | 7٧     |
| 7.7.7            | مثلث متساوي الساقين محيطه ١٨ سم ، أو جد أطوال أضلاعه عندما                            | 7٧     |
| 7,7,7            | تكون مساحته أكبر ما يمكن .                                                            | دراسات |
|                  | معتمداً على الشكل المجاور، جد بعدي                                                    |        |
|                  | المستطيل ذي المساحة الكبرى، الذي يمكن رسمه للمستطيل ذي المساحة الكبرى، الذي يمكن رسمه |        |
| ب <del>أ</del> ب | داخل مثلث قائم الزاوية، بحيث ينطبق أحد أضلاع                                          | ۲۰۰۸   |
|                  | هذا المستطيل على أحد ضلعي القائمة في المثلث                                           |        |
|                  | ورأساه الآخران على ضلعي المثلث الآخرين.                                               |        |
|                  | جد بعدي المستطيل الواقع في الربع الأول والذي مساحته أكبر ما يمكن                      |        |
| ۲ ۱۲،3           | والذي تنطبق قاعدته الكبرى على محور السينات ويقع رأساه الآخران                         | ۲۰۰۸   |
|                  | علی منحنی $u(m)=$ کی $m-m'+$ ۲                                                        | إكمال  |
| الع ٣٤ وحدة      | جد أقصر مسافة بين النقطة (٦٠٠) ومنحني الاقتران س '- ص '= ١٦                           | 79     |
| ۲ –              | جد ميل المستقيم الذي يمر بالنقطة (٤٠٢) ويصنع مع المحورين                              | 79     |
|                  | الإحداثيين في الربع الأول مثلثاً مساحته أصغر ما يمكن .                                | إكمال  |

| الجواب                                            | السؤال                                                                      | السنة    |
|---------------------------------------------------|-----------------------------------------------------------------------------|----------|
|                                                   | يراد صنع وعاء معدني على هيئة اسطوانة دائرية قائمة مفتوحة من أعلى            |          |
| نق = ۳                                            | سعتها $\pi \wedge 1$ سم ، فإذا كانت تكلفة المواد المستعملة $\pi$ دنانير لكل | <b>.</b> |
| ع = ۹                                             | سم من قاعدة الاسطوانة ، وديناراً واحداً لكل سم من سطحها                     | 7.1.     |
|                                                   | الجانبي جد أبعاد الأسطوانة التي تجعل تكاليف صنعها أقل ما يمكن               |          |
|                                                   | جد معادلة المستقيم الذي يمر بالنقطة (٤٤٣) ويصنع مع المحورين                 | <b>.</b> |
| $\Lambda + \omega = \frac{\xi_{-}}{\pi} = \omega$ | الاحداثيين في الربع الأول مثلثاً مساحته أصغر ما يمكن .                      | 7.11     |
|                                                   | سلك طوله ١٢ سم ثني ليكون مثلثاً متساوي الساقين ، أوجد أطوال                 | 7.11     |
| ٤، ٤، ٤                                           | أضلاع هذا المثلث لتكون مساحته أكبر ما يمكن .                                | إكمال    |
|                                                   | جد الإحداثي السيني للنقطة الواقعة على منحني العلاقة                         | <b>.</b> |
| س = ٥                                             | ص ٔ — ۲ ص + عس — ۲۳ = . و تكون أقرب ما يمكن للنقطة (۱٬۳۳)                   | 7.17     |
| <b>~</b> 5                                        | أوجد باستخدام التفاضل أكبر حجم للشكل الناتج من دوران                        | ٧. ٧     |
| πε···                                             | المستطيل محيطه ٦٠سم دورة كاملة حول أحد أضلاعه .                             | 7.18     |
|                                                   | جد مساحة أكبر مستطيل يمكن رسمه بحيث يقع رأسان من رؤوسه                      |          |
| <del>٦٤</del>                                     | على محور السينات والرأسان الآخران على منحني الاقتران                        | 7 • 1 7  |
|                                                   | $\mathcal{V}(\omega) = \lambda - \frac{\gamma}{\pi} \omega^{\gamma}$        |          |

| الجواب                                     | السؤال                                                                                                                                                                                                                                   | السنة           |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| $\left(\frac{1}{2}\right)$ , $\frac{2}{4}$ | جد أقرب نقطة واقعة على المنحنى $0 = \sqrt{m-1}$ إلى النقطة $1(7)$                                                                                                                                                                        | ۲۰۱٤<br>الإكمال |
| 7./                                        | أو جد أقصر مسافة بين النقطة (٢٠٠) ومنحنى العلاقة $ \omega^{ \gamma} - \omega^{ \gamma} = \Lambda $                                                                                                                                       | 7.10            |
| المربع: ٦،٦<br>المستطيل: ٤<br>، ١٢         | سلك طوله ٥٦ سم قسم إلى جزأين ، صنع من أحدهما مربع ومن الآخر مستطيل طوله يساوي ٣ أمثال عرضه ، ما أبعاد المربع والمستطيل ليكون مجموع مساحتيهما أقل ما يمكن .                                                                               | ۲۰۱۵<br>إكمال   |
| <u>₹</u> /> ٢ — ٩<br>٣                     | أب جـ مثلث قائم الزاوية في ب إذا كان طول أب = ٢ سم وطول ب جـ = ٣سم، د نقطة على ب جـ ، أو جد طول د جـ بحيث يكون مجموع طول (د جـ) ومثلي طول (أد) أقل ما يمكن                                                                               | Y•17            |
| ' <sub>ζ</sub> ٣ΛΥΥ                        | أرض مستطيلة الشكل رؤوسها أ، ب، ج، د تتكون من حديقة مستطيلة الشكل مساحتها ٣٢٠٠ متر مربع محاطة بأرصفة عرض كل من الرصيفين على الضلعين أب، جدد يساوي ٤ متر، وعرض كل من الرصيفين على الضلعين الآخرين ٢ متر، أوجد أقل مساحة ممكنة لقطعة الأرض. | Y•1V            |
| ₹ ۲۷                                       | شبه منحرف فيه ٣ أضلاع متساوية في الطول وطول كل منها ٦ سم جد<br>أكبر مساحة ممكنة لشبه المنحرف .                                                                                                                                           | الإكمال         |
| ۱۸سم                                       | أب جـ مثلث قائم الزاوية في ب ، ومتساوي الساقين وطول أجـ = ١٢<br>سم ، ما مساحة أكبر مستطيل يمكن رسمه داخل المثلث بحيث تنطبق<br>أحد أضلاعه على الوتر أجـ ، ويقع الرأسان الاخران على ضلعي القائمة                                           | 7.17            |

| الجواب           | السؤال                                                                                                                                                                                                                            | السنة                     |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ۰ ۸۰ سم۲         | جد مساحة أكبر مستطيل يمكن رسمه داخل دائرة طول نصف قطرها<br>٢٠سم .                                                                                                                                                                 | ۲۰۱۸<br>الدورة<br>الثانية |
| ۸۱ وحدة<br>مربعة | تتحرك النقطة $1(m, m)$ على منحنى الاقتران $0(m)$ منحنى الاقتران $0(m)$ بحيث ميل المماس عندها في أى لحظة يساوي $17m - 7m^{7}$ , $m > 1$ جد اكبر مساحة ممكنة للمثلث أب و ،حيث و نقطة الأصل                                          | Y•19                      |
| ٤،٤،٤            | ثنى سلك طوله ١٢ سم ليكون مثلثاً متساوي الساقين ، أوجد أطوال<br>أضلاع هذا المثلث لتكون مساحته أكبر ما يمكن .                                                                                                                       | ۲۰۱۹<br>الدورة<br>الثانية |
| ۲۶۲۰ ،           | أوجد مساحة أكبر مستطيل يمكن رسمه في الربع الأول ، بحيث يقع رأسان من رؤوسه على محور السينات ، أما الرأسان الآخران : فإحدهما يقع على المستقيم ص = ٢٠ س ، والآخر على المستقيم ص = ٢٠ س .                                             | ۲۰۲۰                      |
| 77/7             | أوجد مساحة أكبر شبه منحرف متساوي الساقين يمكن رسمه داخل منحنى الاقتران $\mathfrak{o}(m) = \sqrt{17} - m^7$ بحيث أن رأسين من رؤوسه أصفار الاقتران ، والرأسين الآخرين يقعان على منحنى الاقتران $\mathfrak{o}(m)$ فوق محور السينات . | ۲۰۲۰<br>الدورة<br>الثانية |

## الوحدة الثالثة

المصفوفات

#### الدرس الأول: المصفوفة

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | السنة                     |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ب      | ما مجموعة حل المعادلة التالية $\begin{bmatrix} \gamma & \gamma & \omega \\ \gamma & \gamma & \omega \end{bmatrix} = \begin{bmatrix} \gamma & \gamma & \omega \\ \gamma & \gamma & \omega \end{bmatrix}$ ؟ المعادلة التالية $\begin{bmatrix} \omega & \gamma & \gamma & \omega \\ \omega & \gamma & \omega \end{bmatrix} = \begin{bmatrix} \gamma & \gamma & \omega \\ \gamma & \gamma & \omega \end{bmatrix}$ (٢) - (٢) (٢) (٢) (١                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۲۰۲۰<br>الدورة<br>الثانية |
| ج      | $\left[ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.19                      |
| ب      | $\{\dot{\epsilon} \mid \delta \mid \hat{\epsilon} \mid \hat$ | ۲۰۱۹<br>الدورة<br>الثانية |
| ب      | إذا كان $\begin{bmatrix} 1 & w' \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 9 & 1 \\ 1 & -1 \end{bmatrix}$ فإن مجموعة قيم $m$ الممكنة $\begin{pmatrix} 1 & w' \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & -1 \end{pmatrix}$ ( $\begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix}$ ( $\begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix}$ ( $\begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix}$ ( $\begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix}$ ( $\begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 & w' \\ -1 & w' \end{pmatrix} = \begin{pmatrix} 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲۰۱۹<br>صناعی             |
| Î      | إذا كانت المصفوفة $= \begin{bmatrix} -1 & 0 & -7 \\ 1 & \xi & 7 \\ -7 & -1 & 7 \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$ فإن قيمة $\begin{bmatrix} 1_{1} \times 1_{1} \\ 1_{2} \times 1_{1} \\ 1_{3} \times 1_{1} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | إضافي                     |
| Î      | $= \frac{1}{1}$ لتكن المصفوفة $= \frac{1}{1}$ التكن المصفوفة $= \frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | إضافي                     |
| د      | $\begin{bmatrix} w & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} w & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ ، فإن قيمة $w \times w$ إذا كانت $w = w + 1$ $w = w + 1$ (1) $w = w + 1$ (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | إضافي                     |

| الجواب |        | <b>ۋا</b> ل     | السا                                  |                  | السنة |
|--------|--------|-----------------|---------------------------------------|------------------|-------|
|        |        | [٤+ w           | ۲٦]=[١-٣٢                             | إذا كانت [س ٔ +١ |       |
| ب      |        |                 | C                                     | فإن قيمة س تساوي | إضافي |
|        | د)- ٤  | جـ)٤            | ب) ه                                  | ۱) - ه           |       |
|        |        | ۲ + ۲           | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | إذا كان [س + ص   |       |
| د      |        |                 |                                       | فإن س ص =؟       | إضافي |
|        | د)–۲   | ج_) ٢           | ب) ٣                                  | ۲- (أ            |       |
| f      | لمقدار | ۱ ۳ فإن قيمة ال | – ∟                                   | _                |       |
|        |        |                 | : هي                                  | س ۲ + س ص + ص    | إضافي |
|        | د) ۱   | جـ) ۲           | ب) ۸                                  | ٤(١)             |       |

#### الدرس الثاني: العمليات على المصفوفات

| الجواب | السؤال                                                                                                                                                                                                | السنة        |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|        | فانت الم ع ب ع ج ثلاث مصفوفات من الرتب :                                                                                                                                                              | 1 1 1        |
| ~      | ۲ ، ۲×۲ ،۲×۲ على الترتيب ، فأي العمليات الآتية صحيحة ؟                                                                                                                                                |              |
| ج      | ) ا×ج +ب ب ×۱ – ۲ج                                                                                                                                                                                    | 7 -1211      |
|        | ۱۳۱×ب+۲ج د) ب×ج+۱۵                                                                                                                                                                                    | الثانية جـ   |
|        | u 	imes 1 عانت المصفوفة من الرتبة $ u 	imes 2$ ب مصفوفة من الرتبة $ u 	imes 2$                                                                                                                        | إذا ك        |
|        | مصفوفة من الرتبة $	extbf{x}	imes 	extbf{ب}$ بحيث $	extbf{z}=	extbf{1}\cdot 	extbf{v}$ ، ما قيم ك $	extbf{v}$ على                                                                                      | *            |
| ب      | نیب ؟                                                                                                                                                                                                 | 7.19         |
|        | أ) ۲،۵ (ب ۲،۵ (أ                                                                                                                                                                                      |              |
|        | کانت $^{1}$ ، $^{1}$ ، $^{1}$ ، $^{1}$ $^{1}$ ، $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$ $^{1}$                                                                                               | ۲۰۱۹ إذا ك   |
| ج      | العبارة الصحيحة فيما يلى ؟                                                                                                                                                                            | الدورة فما   |
|        | $\gamma = \frac{1}{7}$                                                                                    | الثانية أ)   |
|        | کانت ایب، ج مصفوفات من الرتب ۲×۲، ۲×۵ علی                                                                                                                                                             | ۲۰۱۹ إذا ك   |
| د      | نيب وكانت س = أ + ب.ج، فما قيمة المقدار ٢٦ ك×٠٠؟                                                                                                                                                      | الدورة الترة |
|        | أ)-۱۸ ب)-۱۰ جـ)صفر د)۱۰                                                                                                                                                                               | الثانية      |
|        | كانت المصفوفة ج= [٣٣]، فما المصفوفة التي تساوي                                                                                                                                                        | إذا دَ       |
|        |                                                                                                                                                                                                       |              |
| ج      |                                                                                                                                                                                                       | ۲۰۱۹ ج       |
|        | $\begin{bmatrix} \lambda & \lambda \\ \lambda & 1 \end{bmatrix}$ ب $\begin{bmatrix} \lambda & \gamma \\ \lambda & 1 \end{bmatrix}$ ج $\begin{bmatrix} \lambda & \lambda \\ \lambda & 1 \end{bmatrix}$ |              |

| الجواب   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | السنة |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ·        | $     \left[ \begin{array}{ccc}         & 1 \\         & 1 \\         & 2 \\         & 2 \\         & 3 \\         & 2 \\         & 3 \\         & 2 \\         & 4 \\         & 2 \\         & 2 \\         & 3 \\         & 3 \\         & 3 \\         & 3 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 3 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\        & 4 \\         & 4 \\         & 4 \\         & 4 \\         & 4 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                 | إضافي |
| ب        | $!$ إذا كانت $! = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ فإن $!$ = ? $ \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} $ () لا يمكن حسابها $ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ () لا يمكن حسابها                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إضافي |
| f        | مجموعة قيم س التي تحقق المعادلة $\begin{bmatrix} \Upsilon & \mathcal{O} \end{bmatrix} \begin{bmatrix} \mathcal{O} \\ \mathcal{O} \end{bmatrix} = \begin{bmatrix} 1 \cdot 1 \end{bmatrix}$ هي:<br>أ) $\pm \Upsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | إضافي |
| <u>ج</u> | $\begin{bmatrix} 1 - & 1 \\ 1 - & 1 \\ 1 - & 1 \end{bmatrix} = \begin{bmatrix} 1 - & 7 \\ 1 - & 1 \\ 1 - & 1 \end{bmatrix}$ فإن قيم س ، ص على الترتيب : أ. ٢٠ ( ) ١٠٤ ( ) ١٠٤ ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | إضافي |
| د        | إذا كانت أ مصفوفه من الرتبة $1 \times 7$ ، $\boldsymbol{v}$ من الرتبة $1 \times 5$ ، $\boldsymbol{c}$ من الرتبة $1 \times 5$ من الرتبة $1$ | إضافي |
| ب        | $? = \gamma \times \gamma = \gamma$ إذا كانت $\gamma = \gamma = \gamma$ ، $\gamma = \gamma = \gamma$ إذا كانت $\gamma = \gamma = \gamma$ ، $\gamma = \gamma = \gamma$ إ $\gamma = \gamma = \gamma = \gamma$ ب $\gamma = \gamma =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | إضافي |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | السنة |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ج      | ?=1فإن $-1=?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | إضافي |
| ب      | إذا كانت $m$ مصفوفة بحيث $m \times \begin{bmatrix} 1 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ فإن $m$ يمكن أن تكون $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ب) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ب) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ج) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ د) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ د) $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                               | إضافي |
| ب      | إذا كانت أ، ب، ج مصفوفات بحيث أ×ب=ج وكانت رتبة<br>ب=٣×٢ ورتبة ج=٢×٢ فإن رتبة أ هي :<br>أ) ٣×٢ ب) ٢×٣ جـ ٣×٢ د)٢×٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إضافي |
| f      | $   \left\{ \begin{array}{ll}                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | إضافي |
| ب      | إذا كان $\Upsilon^{m}$ $-\begin{bmatrix} \Upsilon & 0 \\ 1 & W \end{bmatrix} = \begin{bmatrix} 1 & \xi \\ V & 0 \end{bmatrix}$ فإن س تساوى :<br>أ) $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & V \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & \Upsilon \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & \Upsilon \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & \Upsilon \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & \Upsilon \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & \Upsilon \end{bmatrix}$ $\rightarrow$ $\begin{bmatrix} \Upsilon & \Upsilon \\ 1 & \Upsilon \end{bmatrix}$ |       |

| الجواب                                                                                                                     | السؤال                                                                                                                                                                                                                                                                                                   | السنة                     |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                            | $1 = {}^{r} \omega + {}^{r} \omega$ اِذَا کَانَت $1 = {}^{r} \omega - {}^{r} \omega$ ابحیث $\omega + {}^{r} \omega - {}^{r} \omega$ اثبت أن $1 = {}^{r} \omega$                                                                                                                                          | 7.19                      |
|                                                                                                                            | إذا كان $1 + 7 + 7 = \begin{bmatrix} 3 & -7 \\ 1 & 7 \end{bmatrix}$ المباب = $\begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ حيث المباب مصفو فتين ، جد $(1 \cdot 1)$                                                                                                                                     | ۲۰۱۹<br>الدورة<br>الثانية |
| [                                                                                                                          |                                                                                                                                                                                                                                                                                                          | إضافي                     |
| $ \begin{bmatrix} \frac{\sqrt{-}}{\circ} & \sqrt{-} \\ \frac{\sqrt{\gamma-}}{\circ} & \frac{\gamma}{\circ} \end{bmatrix} $ | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + w = \begin{pmatrix} \begin{bmatrix} Y & W \\ 2 & 1 - \end{bmatrix} + w \end{pmatrix} = Yw + \begin{bmatrix} 1 & W \\ 1 & 1 \end{bmatrix}$ حل المعادلة المصفوفية : $-Y$                                                                                   | إضافي                     |
|                                                                                                                            | أوجد قيمة س ، ص في المعادلة المصفوفية $\begin{bmatrix} \cdot & \cdot & \cdot \\ 0 & - & \cdot \end{bmatrix} \begin{bmatrix} \cdot & \mathbf{r} \\ \mathbf{r} & - \end{bmatrix} \begin{bmatrix} \cdot & \mathbf{r} \\ \mathbf{r} & - \end{bmatrix} \begin{bmatrix} \mathbf{r} & \mathbf{r} \end{bmatrix}$ | إضافي                     |
|                                                                                                                            | إذا كان ك أ = و ، ك ∈ ع ا مصفوفة برهن أن أ = و أو ك - ٠                                                                                                                                                                                                                                                  | إضافي                     |
| س= ۲<br>ص= -۲                                                                                                              | اذا کانت $l = \begin{bmatrix} 1 & -1 \\ Y & \end{bmatrix}$ ، ب $= \begin{bmatrix} w & 1 \\ w & Y \end{bmatrix}$ جد کلاً من س، ص التي تجعلان $l$ ب $=$ ب $l$                                                                                                                                              | إضافي                     |
| س = ۱، ع = ۱<br>ص = ۰ , ۰                                                                                                  |                                                                                                                                                                                                                                                                                                          | إضافي                     |

#### الدرس الثالث: المحددات

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | السنة |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ب      | $\begin{vmatrix} 1 & \cdot & \cdot \\ 1 & \cdot & \cdot \\ 0 & 1 \end{vmatrix}$ اب الجاب الحاب ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.7.  |
| د      | ای من الآتیة تساوی $  \cdot   \cdot  $ جاس $  \cdot $ |       |
| د      | افذا کان $\begin{vmatrix} 1 & v & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = 0$ ، فما قیمة $\begin{vmatrix} 1 & v & 1 \\ 1 & 1 & 1 \\ -1 & 1 & 1 \end{vmatrix} = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.19  |
| ب      | إذا كانت $ ^1 = \begin{bmatrix} 7 & 7 \\ 7 & 0 \end{bmatrix} $ وكانت ب مصفوفة مربعة من الرتبة الثانية بحيث $   \Upsilon   +   = 1 $ فما قيمة $   \Psi   $ ? $   \Psi   = 1 $ فما $   \Psi   +   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| ج      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | إضافي |
| f      | إذا كانت أ ، ب مصفو فتين مربعتين من الدرجة الثانية وكان<br> ۱۲  =  ب  وكان  ۱  = ٣ فإن  ب  = ؟<br>أ١٢/ ب) ٢ جـ) ٣ د)٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إضافي |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | السنة |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| ج      | إذا كان $\begin{vmatrix} \xi & w \\ q & \gamma \end{vmatrix} = فإن قيمة س تساوي :   1 كان \begin{vmatrix} \chi \\ \chi \end{vmatrix} \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | إضافي |
| ج      | $? = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ فإن $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ و $\begin{vmatrix} 1 \\ 1$ | إضافي |
| ب      | =   ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | إضافي |
| ح      | 1 -   1   = 1    ا $  - 1   = 1 $   ا $  - 1   = 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $   ا $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $     $  - 1  $       $  - 1  $       $  - 1  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إضافي |
| ب      | إذا كان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إضافي |
| د      | إذا ضربت جميع عناصر محدد من الرتبة الثالثة قيمته / في العدد ٢<br>فإن قيمة المحدد الناتج تساوى :<br>أ) / ب) ٢/ ج) ٤١ د) ٨/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | إضافي |
| د      | $     \left  \begin{array}{ccc}                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | إضافي |

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| د      | $  (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{2} - (-1)^{$ | إضافي |
| د      | جاه جتاه <br> -جتاه جاه <br>أ) صفر ب) -۱ جـ) جتا۲ه د) ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | إضافي |
| f      | $\begin{vmatrix} 1 & v & -c \\   & v & -c \\   & & &   &   &   &   &   &   &   &  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إضافي |
| ح      | إذا كان أ،ب مصفوفتين مربعتين من الرتبة الثانية بحيث<br> -٢١×ب =٤٨، وكان  ب =٢، فإن قيمة  ١ =؟<br>أ) -١٢ ب) -٦ ج) ٦                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | إضافي |
| ٤      | ر مجموعة حل المعادلة على المعا | إضافي |

| الجواب  | السؤال                                                                                                                                                | السنة             |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| س€ح     | جد قیم س التي تجعل س ۳ س = -۹<br>م س التي تجعل س ۳ س ع                                                                                                | ۲.۲.              |
|         | باستخدام خواص المحددات ، أثبت أن :                                                                                                                    | ۲.۲.              |
|         | اس ــ ۳ ا                                                                                                                                             | ۲۰۲۰              |
| س = ۲   | $egin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                    | الدورة<br>الثانية |
|         | دون فك المحدد برهن أن :                                                                                                                               | النالية           |
|         | $ \begin{cases}                                   $                                                                                                   | إضافي             |
|         | دون فك المحدد أثبت أن $= (m-\omega)(\omega-3)(3-\omega)$ $= (m-\omega)(\omega-3)(3-\omega)$ $= (m-\omega)(\omega-3)(3-\omega)$                        | إضافي             |
|         | ا جنا۱–جا۱ جنا۱+جا۱ جا۱ جا۱ جا۱ برهن أن ا جناب–جاب جناب+جاب ۲= ۱ جناب جاب ا جناب جاب ا جناج جاج ۱ جناج جاج ۱ جناج جاج ۱ جناج اجاج ۱ جناج جاج ۱ جناج ا | إضافي             |
| س = ۲۳- | $\begin{vmatrix} 1 & 7 & 7 \\ w & w \end{vmatrix} = \begin{vmatrix} 1 & 7 & 7 \\ w & \xi & 0 \\ 7 & 1 & 7 - \end{vmatrix}$ جد قیمة س التی تحقق        | إضافي             |

| الجواب  | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | السنة |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|         | دون فك المحدد أثبت أن بـ بـ بـ ا+ب ٢ بـ بـ المحدد أثبت أن بـ بـ ا+ب ٢ بـ ٢ المحدد أثبت أن المحدد أن المحد | إضافي |
|         | دون فك المحدد أثبت أن $ 0$ $ 0$ $ 0$ $ 0$ $ 0$ $ 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | إضافي |
| 1+~+(+) | ا+ ل                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | إضافي |
|         | بدون فك المحدد أثبت أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
|         | $\begin{vmatrix} \omega & w & w \\ -\omega & w & w \end{vmatrix} = \cdot$ هي معادلة مستقيم يمر بالنقطتين أثبت أن $\cdot$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | إضافي |
|         | ا ب ج ا ا ب ج ا ا ب ج ا ا ب ب ج ا ا ب ب ج ا ا ب ب ب ج ا ا ب ب ب ج ا ا ب ب ب ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إضافي |
| ٤-      | اس + ۱ س ا ۱ س ۱ س ۱ س ۱ س ۱ ۳ ۲ محدد الله ۱ س ۲ ۳ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ ۱ س ۲ ۱ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲ س ۱ ۲  |       |

## الدرس الرابع: النظير الضربي للمصفوفة المربعة

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | السنة                     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| f      | إذا كانت الحب، عثلاث مصفوفات مربعة غير منفردة ، وكان المب= فأي المصفوفات التالية تمثل ب $^{-1}$ ؟  أ) $= (-1)^{-1} \times (-1)^{-1}$ د) $(-1)^{-1} \times (-1)^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7.                      |
| ب      | إذا كانت المصفوفة من الرتبة $\mathbb{T} \times \mathbb{T}$ وكان $ 1  = - \mathbb{T}$ فما قيمة $\left  \left( \frac{1}{\mathbb{T}} \right)^{-1} \right $ ? $ \hat{1} = - \mathbb{T}$ أ) $- \mathbb{T}$ ح) $- \mathbb{T}$ د) $- \mathbb{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.7.                      |
| ج      | $   \left[ \begin{array}{cccc}                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ۲۰۲۰                      |
| ج      | ما قيمة س التي تجعل من المصفوفة $\begin{bmatrix} 1 & \mu \\ \gamma & 1 \end{bmatrix}$ مصفوفة منفردة $\begin{bmatrix} \frac{\pi \gamma}{\gamma} \\ \frac{\pi \gamma}{\gamma} \end{bmatrix}$ ما قيمة س التي تجعل من المصفوفة $\begin{bmatrix} \frac{\pi \gamma}{\gamma} \\ \frac{\pi \gamma}{\gamma} \end{bmatrix}$ علماً أن س $\begin{bmatrix} \frac{\pi \gamma}{\gamma} \\ \frac{\pi \gamma}{\gamma} \end{bmatrix}$ حلماً أن س $\begin{bmatrix} \frac{\pi \gamma}{\gamma} \\ \frac{\pi \gamma}{\gamma} \end{bmatrix}$ حلماً أن سرائي المصفوفة منفردة                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.7.                      |
| ب      | انت ا $=$ $\begin{bmatrix} w + z & z \end{bmatrix}$ الما هي قيمة $w$ الما $=$ $z$ كانت ا $=$ كانت الما ك | ۲۰۲۰<br>الدورة<br>الثانية |
| ج      | إذا كانت $ m$ ، $ o$ مصفوفتان غير منفردتان من الرتبة $ u \times u $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |

| الجواب | السؤال                                                                                                                                                                                                                               | السنة   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ĺ      | ما قيمة/ قيم س الموجبة التي تجعل المصفوفة له س عنفردة ؟                                                                                                                                                                              | 7.19    |
|        | اً)٤ ب ٣ (ب ٤(أ                                                                                                                                                                                                                      |         |
|        | ما قيمة الثابت ك الموجبة التي تجعل المصفوفة ١= [ك-٢ ٣] منفردة ؟                                                                                                                                                                      | 7.19    |
| د      |                                                                                                                                                                                                                                      | الدورة  |
|        | أ) ۱ ب ۲ ب ۱ أ                                                                                                                                                                                                                       | الثانية |
|        | $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ واذا كانت $f' = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ وماذا يساوى المقدار $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$                                                      | 7.19    |
| ج      |                                                                                                                                                                                                                                      | الدورة  |
|        | $\begin{bmatrix} 1 & \xi \\ Y & 1 \end{bmatrix} (3) \qquad \begin{bmatrix} 1 & \xi \\ Y - 1 \end{bmatrix} (-2) = \begin{bmatrix} Y - W \\ \xi & W \end{bmatrix} (-2) = \begin{bmatrix} 0 & W - \\ 0 & \xi - \end{bmatrix} (1)$       | الثانية |
|        | إذا كانت أ مصفوفة مربعة من الرتبة الثانية ، ب مصفوفة مربعة من الرتبة الثالثة                                                                                                                                                         | 7.19    |
| ب      | ، فأي مما يلى لا يمكن ايجاده ؟                                                                                                                                                                                                       | صناعي   |
|        | أ) ا <sup>۱</sup> اب ا+ ب ا ج ) ا۲ب ا د) اا + اب ا+ ۲                                                                                                                                                                                | حبت عی  |
|        | جميع المصفوفات لها معكوس ضربي ما عدا المصفوفة :                                                                                                                                                                                      |         |
| د      | $\begin{bmatrix} 7 & 1 \\ 7 & \pi \end{bmatrix} (2 & \begin{bmatrix} 7 & 0 \\ 1 & 7 \end{bmatrix} (2) = \begin{bmatrix} 0 & 1 \\ 1 & 7 \end{bmatrix} (1) \begin{bmatrix} 1 & 1 \\ 2 & \pi \end{bmatrix} (1)$                         | إضافي   |
|        | ا مصفوفة من الرتبة ٧×٠، فإن إحدى العبارات التالية صحيحة :                                                                                                                                                                            |         |
| د      | أ) للمصفوفة أ نظير ضربي ب) يمكن ايجاد المصفوفة أ×أ                                                                                                                                                                                   | إضافي   |
|        | ج) يمكن تنفيذ العملية £ + 1 د) للمصفوفة أ نظير جمعى                                                                                                                                                                                  |         |
| ٠.     | إذا كانت أ $=$ $\begin{bmatrix} 0 & 7 \\ 0 & 7 \end{bmatrix}$ ، $=$ $\begin{bmatrix} -7 & 7 \\ -7 & 1 \end{bmatrix}$ وكان أ $\times$ $=$ $=$ $=$ فإن $=$ تساوى:                                                                      | *1 •1   |
|        | $\begin{bmatrix} 7 & 9 - \\ 1 - w \end{bmatrix} (2) \qquad \begin{bmatrix} 5 & 17 - \\ 1 - 7 \end{bmatrix} (2) \qquad \begin{bmatrix} 5 & 11 - \\ 1 - w \end{bmatrix} (4) \qquad \begin{bmatrix} 1 & A - \\ 7 & w \end{bmatrix} (5)$ | إضافي   |

| الجواب   | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | السنة |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <u>ح</u> | قيمة س التي تجعل المصفوفة $\begin{bmatrix} w-1&\gamma\\ 1&w&\xi \end{bmatrix}$ منفردة هي : $\psi$ ب $\psi$ ب $\psi$ ب $\psi$ عنام عنام $\psi$ عنام $\psi$ عنام $\psi$ المحتال والمحتال وا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | إضافي |
| 3        | قيمة أ التي تجعل المصفوفة $\begin{bmatrix} 1 & 7 \\ \Lambda & 1 \end{bmatrix}$ ليس لها نظير ضربي هي : أ) $\pm$ \$ $\pm$ \$ $\pm$ \$ 17(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | إضافي |
| د        | إذا كانت أ، ب مصفوفتين مربعتين غير منفردتين من الرتبة الثانية فإن إحدى العبارات التالية صحيحة دائما:  أ) $  \cdot \cdot \cdot   =   \cdot                         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | إضافي |
| 3        | $     ( \cdot )   ( \cdot ) $ | إضافي |
| ح        | $? = ^{\prime -} 1$ فإن $^{\prime -} 1 = ^{\prime -} 1$ اإذا كانت $^{\prime +} 1 = ^{\prime -} 1 = ^{\prime \prime -} 1 = ^{\prime$                                                        |       |
| <b>.</b> | المصفوفة المنفردة بين المصفوفات التالية : $\begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$ د) $\begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$ ب) $\begin{bmatrix} -2 & 1 \\ -2 & 1 \end{bmatrix}$ ج) $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ د) $\begin{bmatrix} -2 & 1 \\ -2 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | إضافي |

| الجواب                                                                                                                                                                                                                                                                                                  | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | السنة                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| ['\]                                                                                                                                                                                                                                                                                                    | أ) إذا كان $f = \begin{bmatrix} 1 & \xi \\ \zeta & \gamma \end{bmatrix}$ ، $\psi = \begin{bmatrix} \Lambda \\ q \end{bmatrix}$ أوجد المصفوفة $\pi$ بحيث أن $f = \psi - \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.7.                      |
|                                                                                                                                                                                                                                                                                                         | $ Y+ ^{-}$ اوجد $ Y+ ^{-}$ اوجد $ Y+ ^{-}$ اوجد $ Y+ ^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ۲۰۲۰<br>الدورة<br>الثانية |
| $\begin{bmatrix} m & m \\ 1 - m & m \\ m & m \end{bmatrix}$ $1 = \begin{bmatrix} m & m \\ m & m \end{bmatrix}$                                                                                                                                                                                          | إذا كان $l = \begin{bmatrix} - v & -v \\ 1 & 1 \end{bmatrix}$ ، $v = \begin{bmatrix} -v & -t \\ 1 & 1 \end{bmatrix}$ أو جد (۱) المصفوفة $l = 1$ $v = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Y•19                      |
| $ \mathcal{T} \mathbf{Y} = \mathbf{w} $ $ \mathbf{A} = \mathbf{v} $ $ \mathbf{\xi} = \mathbf{\xi} $ $ \begin{bmatrix} \mathbf{v} & \frac{1-\gamma}{\gamma} \\ \frac{-\gamma}{\lambda} & \frac{1}{\xi} \end{bmatrix} = \mathbf{v} \begin{pmatrix} \mathbf{v} \\ \mathbf{v} \\ \mathbf{v} \end{pmatrix} $ | إذا كان<br>$ \psi = \begin{bmatrix} w + 3 & 0 \\ -7w & \sqrt{3} \end{bmatrix} = 7 \begin{bmatrix} 7 & 7 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 7 & 7 \\ 1 & 1 \end{bmatrix} \cdot = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} -7w & \sqrt{3} \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 7 & 7 \\ 1 & 1 \end{bmatrix} \cdot = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ $ \psi = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} $ | ۲۰۱۹<br>الدورة<br>الثانية |
| \[ \begin{pmatrix} \cdot \cdot \- \\ \tau - \\ \end{pmatrix} \frac{1}{1\text{V}-} \end{pmatrix}                                                                                                                                                                                                         | $\begin{pmatrix} \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} \end{pmatrix}$ أوجد $\begin{pmatrix} \mathbf{Y} & \mathbf{Y} \\ \mathbf{Y} & \mathbf{Y} \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | إضافي                     |
| ب <sup>-</sup> و [۲ - ۲]                                                                                                                                                                                                                                                                                | $^{\prime}$ اِذا کان $^{\prime}$ $=$ $\begin{bmatrix} x & y \\ y & z \end{bmatrix}$ ، $^{\prime}$ $=$ $\begin{bmatrix} x & y \\ y & z \end{bmatrix}$ أوجد ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | إضافي                     |
| $ \begin{bmatrix} \xi & \xi - \\ \gamma & \gamma - \end{bmatrix} = \varphi $                                                                                                                                                                                                                            | إذا كان $(1 - \frac{7}{4})^{-1} = \begin{bmatrix} 1 & 7 \\ 7 & 7 \end{bmatrix}$ او جد ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | إضافي                     |

| الجواب | السؤال                                                                                                                                                                                       | السنة |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| إضافي  | افذا کانت $w = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، $w = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، $w = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ برهن أن $w = 23^{-1}$ | إضافي |
| إضافي  | إذا كانت المصفوفة س مصفوفة مربعة من الرتبة الثانية جد حل المعادلة المصفوفية $7m^{'}+7m=7$                                                                                                    | إضافي |
| إضافي  | اذا کانت $1$ ، ب مصفوفتین غیر منفردتین وکان $1$ ب $=$ ب $1$ أثبت أن $1$ ب $=$ ب $1$ $1$                                                                                                      | إضافي |

# الدرس الخامس: حل أنظمة المعادلات الخطية باستخدام المصفوفات

| الجواب | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | السنة |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| أ + ب  | إذا كانت $m$ مصفوفة غير منفردة من الرتبة الثانية ، وكانت تحقق المعادلة : $m^7 - m = e_7$ فأي من التالية ثمل $m$ ?  أ) $e_7$ أو $e_7$ ب ب) $e_7$ ب ب) $e_7$ ب أو $e_7$ ب أو $e_7$ ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ۲۰۲۰  |
| Í      | استخدم محمد طریقة کرایمر لحل نظام مکون من معادلتین خطیتین فی متغیرین س، ص وجد أن $ 1 -  1  = \frac{1}{4}  1  = \frac$ | 7.19  |
| ب      | عند حل نظام مکون من معادلتین خطیتین فی متغیرین س، ص وجد ان                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | إضافي |
| ح      | عند حل نظام من المعادلات الخطية باستخدام كرايمر وجد أن $w = -7$ ال $  = 1 - 7  $ فإن قيمة ص : $  = 1 - 7  $ فإن قيمة ص : $  = 1 - 7  $ فإن قيمة ص :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إضافي |

| الجواب                                                                                     | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | السنة               |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                                                                                            | إذا كانت $m + 7 = 1$ احدى المعادلتين الخطيتين بمتغيرين                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| $\frac{1}{3} =  \mathfrak{f} $                                                             | ، وعند استخدام طريقة كريمر للحل ، وجد أن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ۲۰۲۰                |
| ,                                                                                          | $oldsymbol{\wedge} + oldsymbol{\wedge} + oldsymbol{$ |                     |
|                                                                                            | حل المعادلة المصفوفية التالية :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| $\begin{bmatrix} \frac{\circ}{\gamma} \\ \frac{\gamma - 1}{\gamma} \end{bmatrix} = \omega$ | $\begin{bmatrix} \mathbf{Y} \\ 1 \end{bmatrix} = \mathbf{w} \times \begin{bmatrix} 1 & 1 \\ \mathbf{Y} & \mathbf{Y} \end{bmatrix} - \mathbf{w} \mathbf{Y} \times \begin{bmatrix} \mathbf{Y} & \mathbf{W} \\ \mathbf{W} & \mathbf{\xi} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.7.                |
| س=۲                                                                                        | استخدم طريقة جاوس لحل نظام المعادلات الخطية التالية:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.7.                |
| ξ=ε                                                                                        | - ۲س + ۳ص - ٤ = ١<br>س + ٢ص - ٤ = ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | الدورة              |
| ص=۳                                                                                        | $\mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r} + \mathbf{r} = \mathbf{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | الثانية             |
|                                                                                            | عند حل نظام يتكون من معادلتين خطيتين بالمتغيرين س ، ص                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ۲۰۲۰                |
| س=-۳<br>ص=۲                                                                                | $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | الدورة              |
| , ,                                                                                        | ا أوجد قيمتي س ، ص                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | الثانية             |
| س = ۳ ، ص = ۲                                                                              | حل النظام باستخدام طريقة جاوس :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.19                |
| 1= &                                                                                       | ۳ - س + ع = ۲ ، ۲ س + ص − ع − ۷ = ، ، 63 − س = ۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|                                                                                            | النظام المقتراء المقت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.19                |
|                                                                                            | حل النظام باستخدام طريقة جاوس :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | الدورة              |
| , _ 5                                                                                      | س + ۲ س = ۱ ، س + ٤ ص = ۱                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | الثانية             |
| $\frac{r}{r} = \omega$                                                                     | جد حل النظام التالي باستخدام النظير الضربي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | إضافي               |
| $\frac{1}{7} = \omega$                                                                     | س + ۳ ص = ۰ ، س + ص - ۲ = ۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>'</u> ِــــدـــي |

| الجواب                                                                  | السؤال                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | السنة |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| س = ب<br>ص = ب                                                          | جد حل النظام التالي باستخدام النظير الضربي                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | إضافي |
| س = ۲-<br>ص = ۳                                                         | أو جد حل النظام الآتي باستخدام كرايمر $-1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | إضافي |
| س = ۷<br>ص = ۲۰                                                         | أو جد حل النظام الاتي باستخدام كرايمر $ ho =  ho + \sigma =  ho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | إضافي |
| س = ۱<br>ص = ۱                                                          | اوجد حل النظام باستخدام طريقة جاوس :<br>٣س + ٧ص = ١٠ ، س + ص = ٢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | إضافي |
| س = ٥ ، ص =<br>٢-= ٤                                                    | او جد حل النظام باستخدام طریقة جاوس $w + \omega = 3$ ، $v + \omega + 73 = 0$ ، $v + 3 = 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | إضافي |
| $\frac{1}{7} = 1$ $\frac{1}{7} = 1$ $\frac{1}{7} = 1$ $\frac{1}{7} = 1$ | إذا كان الاقتران $\upsilon(m) = m^{r} + vm + \pi$ جد باستخدام المصفوفات الثوابت $1$ ، $v$ ، $\pi$ بحیث : $\frac{1}{r}$ $\upsilon(1) = 1$ ، $\upsilon(-\pi) = 1$ ، $\upsilon(1) = \frac{1}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | إضافي |
| $     \begin{aligned}                                $                  | عند حل نظام من المعادلات الخطية باستخدام كرايمر وجد أن : س= ٢، ص = ٤ ،  أراع   ٢ جد  ١  ،  ١راع   ١ مل الملاح المل | إضافي |