

الرياضيات

"التكنولوجي"

الفترة الثانية

جميع حقوق الطبع محفوظة ©

دولة فلسطين

وك المناهم

mohe.ps 📦 | mohe.pna.ps 📦 | moehe.gov.ps 📦 f.com/MinistryOfEducationWzartAltrbytWaltlym

حي الماصيون، شارع المعاهد ص. ب 719 - رام الله - فلسطين pcdc.mohe@gmail.com ☑ | pcdc.edu.ps 🏠

المحتويات

	التفاضل Differentiation
٤	متوسط التغير Rate of Change
٨	مفهوم المشتقة الأولى First Derivative
١٣	قواعد الإشتقاق (١) Differentiation Rules
١٨	قواعد الإشتقاق (٢) Differentiation Rules
77	قاعدة السلسلة (مشتقة الاقتران المركب) Chain Rule
77	القيم القصوى Extreme Values
٣.	تطبيقات عملية على القيم القصوى Applications

يتوقع من الطلبة بعد دراسة هذه الوحدة المتمازجة والتفاعل مع أنشطتها أن يكونوا قادرين على توظيف الاشتقاق في الحياة العمليّة من خلال الآتي:

- ١. التعرف إلى مفهوم متوسط التغير للاقتران وإيجاده.
- ٢. التعرف إلى مفهوم المشتقة الأولى للاقتران، وإيجادها باستخدام التعريف.
- ٣. التعرف على قواعد الاشتقاق، واستخدامها لإيجاد مشتقات بعض الاقترانات.
- إيجاد معادلة المماس، ومعادلة العمودي على المماس لمنحنى الاقتران عند نقطة تقع عليه.
 - ٥. إيجاد المشتقة الأولى باستخدام قاعدة السلسلة.
 - ٦. إيجاد القيم القصوى المحلية للاقتران.

متوسط التغير (Rate of Change):

تعریف:

إذا كان $ص={\color{red} m{\mathcal{O}}}(m)$ اقتراناً، وتغيرت فيه س من س إلى س فإن Δ س m س m تمثل التغير في س وتقرأ دلتا س.

وبناءً على التغير في س تتغير ص، حيث Δ ص $=\omega_{_{7}}-\omega_{_{1}}=\omega$ (س $_{_{1}}$) - تمثل التغير في ص.

يسمى المقدار $\frac{\Delta_{0}}{\Delta_{0}} = \frac{\omega_{0} - \omega_{0}}{\omega_{0} - \omega_{0}} = \frac{\omega(\omega_{0}) - \omega(\omega_{0})}{\omega_{0} - \omega_{0}}$ متوسط التغير للاقتران $\omega(\omega)$ عندما تتغير س من س إلى س

متوسط التغير للاقتران ن(س).

الحل: متوسط التغير =
$$\frac{\mathcal{O}(m_{\gamma}) - \mathcal{O}(m_{\gamma})}{m_{\gamma} - m_{\gamma}}$$

$$= \frac{\mathcal{O}(\circ) - \mathcal{O}(\Upsilon)}{r - o}$$

$$= \frac{17 - o\xi}{7 - o}$$

التغير للاقتران
$$\mathfrak{O}(m)$$
.

الحل: متوسط التغير = $\frac{\mathfrak{O}(m_{\gamma}) - \mathfrak{O}(m_{\rho})}{m_{\gamma} - m_{\rho}}$

$$\Delta$$
س = س $_{_{1}}$ – س $_{_{1}}$

$$\frac{\mathbf{U}(\circ) - \mathbf{U}(\mathbf{w})}{\mathbf{w}_{\mathsf{v}} - \mathbf{w}_{\mathsf{v}}}$$

$$\frac{\lambda^{-}-1\xi^{-}}{\gamma^{-}\circ}=$$

 $^{-7}$ مثال (٤): إذا كان متوسط تغير الاقتران ص $\mathbf{0} = \mathbf{0}$ (س) عندما تتغير س من س $^{-7}$ إلى س $^{-8}$ يساوي $^{-7}$ ، أحد:

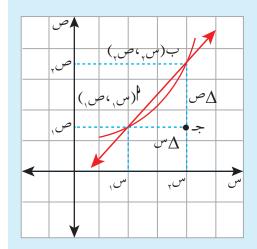
ب.
$$\mathfrak{V}(9)$$
 علماً بأن $\mathfrak{V}(7) = 7$

الحل: أ. التغير في س
$$\Delta=0$$
س

متوسط التغیر
$$= \frac{\Delta - \Delta}{\Delta} = \frac{\Delta - \Delta}{11}$$
 متوسط التغیر $= \frac{\Delta}{\Delta}$

$$\dot{\Omega}_{0} = \dot{\Omega}_{1} - \dot{\Omega}_{0}$$

أتذكر:



إذا كان الشكل المجاور يمثل منحنى الاقتران ص= v(m)، والنقطتان أ(س، ص) ، ب(س، ص) واقعتين عليه، فإن ميل

ومتوسط التغير للاقتران ص
$$\mathbf{v} = \mathbf{v}(\mathbf{w})$$
 يساوي $\frac{\mathbf{w}_{1} - \mathbf{w}_{2}}{\mathbf{w}_{3} - \mathbf{w}_{1}}$

أي أن متوسط التغير للاقتران يساوي ميل المستقيم القاطع أب.

⇒ مشال (ه): تقع النقطتان (۱-۱، ۳)، ب(۳، ۹) على منحنى الاقتران ص= ن(س)، أجد ميل المستقيم

$$rac{\Delta}{\Delta} = \frac{\Delta}{\Delta}$$
 الحل: ميل المستقيم القاطع Δ

$$\frac{1}{\sqrt{m}} - \frac{m}{m} =$$

$$\frac{7--4}{}=$$

تمارين ومسائل (٣-١)

س۱: اِذا کان ص ${\mathfrak G}={\mathfrak G}({\mathfrak G})={\mathfrak G}$ س ، Δ ص عندما تتغیر س:

$$^{\prime\prime}$$
أ. من س $^{\prime\prime}$ ۲ إلى س $^{\prime\prime}$

$$Y^{-} = \{ b_{1}, b_{2}, b_{3} \}$$
 بالى س

w: أجد متوسط التغير للاقتران صv = v(س) في الحالات الآتية:

اً.
$$\boldsymbol{v}(m) = \sqrt{m-m}$$
 ، عندما تتغیر س من $m = \gamma$ إلى $m_{\gamma} = 3$

$$oldsymbol{\psi}$$
ب. $oldsymbol{\psi}(\omega)=\omega^{1}-1$ ، عندما $\omega_{0}=1$ ، Δ س = خ

- س٣: تقع النقطتان أ(٢٠،٥)، ب(١٠،٣) على منحنى الاقتران ص= ٠٥(س)، أجد ميل المستقيم القاطع أب.
 - \boldsymbol{w} یکن ص \boldsymbol{v} (س) اقتراناً، وکان متوسط تغیر الاقتران عندما تتغیر س من س ا التراناً، وکان متوسط تغیر الاقتران عندما هو ۱۳، أجد:

أ. التغير في ص.

 $\tau = (1)$ علما بأن $\sigma(1) = 7$

مفهوم المشتقة الأولى (First Derivative):

••• تعریف:

المشتقة الأولى للاقتران ص $\boldsymbol{\upsilon} = \boldsymbol{\upsilon}(\boldsymbol{\upsilon})$ عند النقطة (سى، $\boldsymbol{\upsilon}(\boldsymbol{\upsilon})$) هى:

$$\frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}}) - \sigma(m_{\text{\tiny N}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny M}}^{+}\Delta_{\text{\tiny M}})}{\Delta_{\text{\tiny M}}} = \frac{\sigma(m_{\text{\tiny M}}^{+}\Delta_{\text{\tiny$$

وللتبسيط يمكن كتابة
$$\Delta_m = \mathbb{A}$$
 ، فتكون $\sigma'(m_{_{\!\!\!\!/}}) = \int_{\mathbb{A}_+} \frac{\sigma(m_{_{\!\!\!\!/}} + \mathbb{A}_-) - \sigma(m_{_{\!\!\!\!/}})}{\mathbb{A}_-}$

0 مثال (۱): إذا کان 0(س) = 0 ، أجد 0/(۲) باستخدام تعریف المشتقة عند نقطة.

$$\frac{\mathcal{O}(Y)}{\mathbb{E}} = \frac{\mathcal{O}(Y + \mathbb{A}) - \mathcal{O}(Y)}{\mathbb{A}} = \frac{\mathcal{O}(Y) + \mathbb{A} - \mathcal{O}(Y)}{\mathbb{A}} = \frac{\mathcal{O}(Y)}{\mathbb{A}} = \frac{\mathcal{O}(Y)}{\mathbb{A}$$

 \sim مثال (۲): إذا كان ق(m) = m، أجد m(1) باستخدام تعریف المشتقة عند نقطة.

الشاط (١):

اذا کان $\mathbf{U}(m) = \mathbf{o} - \mathbf{v}$ ، أجد $\mathbf{v}'(z)$ باستخدام تعریف المشتقة عند نقطة؟

$$U(\xi) = \frac{U(\xi + \epsilon_0) - U(\xi)}{\epsilon_0}$$
 الحل: $U'(\xi) = \frac{U(\xi + \epsilon_0) - U(\xi)}{\epsilon_0}$

۲- =

17 =

 * مثال (۳): إذا كان $\mathfrak{V}(m) = rm^{7} + 1$ ، أجد $\mathfrak{V}(7)$ باستخدام تعریف المشتقة عند نقطة?

$$| U_{-}U_{-}| = \frac{U(\gamma + \alpha) - U(\gamma)}{\alpha}$$

$$= \frac{(\gamma + \alpha)^{\gamma} + (1 - (\gamma \times \gamma^{\gamma} + 1))}{\alpha}$$

$$= \frac{(\gamma + \alpha)^{\gamma} + (1 - (\gamma \times \gamma^{\gamma} + 1))}{\alpha}$$

$$= \frac{(\gamma + \beta)^{\gamma} + (\gamma + \gamma)^{\gamma} + (\gamma + \gamma)^{\gamma}}{\alpha}$$

$$= \frac{(\gamma + \gamma)^{\gamma} + (\gamma + \gamma)^{\gamma}}{\alpha}$$

$$= \gamma + \gamma + \gamma \times \cdots$$

$$\frac{U(7) - U(7) - U(7)}{0}$$

$$= \frac{1}{0} \cdot \frac{1}{0}$$

 $a^{2} - a^{2} = a^{2} - a^{2}$ افتر (٥): إذا كان متوسط تغير الاقتران $a = a^{2} = a^{2} = a^{2}$ عندما تتغير في الفترة [٣، ٣ + هـ] يساوي $a = a^{2} - a^{2} = a^{2}$ أجد $a = a^{2} + a^{2} = a^{2} = a^{2}$

$$\frac{\mathcal{G}(\mathbf{w}^{2}+\mathbf{w})-\mathcal{G}(\mathbf{w}^{2})}{\mathbf{w}}=\frac{\mathbf{w}^{2}-\mathbf{o}\mathbf{w}}{\mathbf{w}}=\frac{\mathbf{w}^{2}-\mathbf{o}\mathbf{w}}{\mathbf{w}}$$

$$\frac{(r)\upsilon - (-a + r)\upsilon}{a} = (r)^{\prime}\upsilon$$

$$= \frac{\mathbb{A}_{a} \cdot (\mathbb{A}_{a} - \mathbb{O})}{\mathbb{A}_{a}} = -\mathbb{O}$$

ألاحظ أن $v^{(m)}$ تساوي نهاية متوسط التغير للاقتران v(m) في الفترة [$m_{,}$ ، $m_{,}$ + هـ] عندما تؤول هـ إلى الصفر.

اذا کان $\boldsymbol{U}(m) = m' + m$ ، أجد $\boldsymbol{U}'(m)$ باستخدام تعریف المشتقة، ثم أجد $\boldsymbol{U}'(7)$.

الحل:
$$v'(m) = \frac{(m + a)' + m - (m' + m)}{a} = \frac{(m + a)' + m - (m' + m)}{a}$$

$$= \underbrace{\frac{w'+7w \cdot a + a'+ w - w' - w}{a}}_{a}$$

ومنها
$${\cal O}^{\prime}(7)=7 imes 7$$

تمارين ومسائل (٣-٢)

v عند النقطة المعطاة في كل حالة: المشتقة عند نقطة، أجد v

$$^{-}$$
اً. $\mathbf{U}(m) = 7$ س $^{-}$ س $^{-}$

$$\mathbf{v} = \mathbf{v} - \mathbf{v}$$
ب. $\mathbf{v}(\mathbf{w}) = \mathbf{v} - \mathbf{w}$ ، س

$$\bullet$$
ج. $\mathcal{O}(m) = m^{2} + m$ ، $m = \infty$

س۲: إذا كان $\sigma^{\prime}(\pi) = \Lambda$ ، أجد:

$$\frac{\mathcal{O}(7+4c)-\mathcal{O}(7)}{74c}$$

س۳: إذا كان متوسط تغير الاقتران $\omega = \upsilon(m)$ في الفترة [۳، ۳ + هـ] يساوي $\frac{7}{(1+s)}$ أجد $\upsilon'(\pi)$.

سع: إذا كانت Δ ص $= \frac{\sqrt{8} - a^{\frac{1}{2}}}{2}$ هي التغير في الاقتران ص $= \mathbf{0}$ (س) عندما تتغير س من س $m_{ij} = 0 + a_{ij}$, $d_{ij} = 0$

قواعد الاشتقاق (١): (Differentiation Rules)

حاول همّام إيجاد $\mathbf{v}'(\mathbf{r})$ حيث $\mathbf{v}(\mathbf{w}) = \mathbf{r}\mathbf{w}^\circ + \mathbf{w}^\mathsf{T} - \mathbf{r}\mathbf{w}^\mathsf{T}$ بالطريقة التي تعلمها في الدرس السابق كما يأتي:

$$\mathbf{U}^{\prime}(Y) = \mathbf{v}^{\prime}(Y) = \mathbf{v}^{\prime}(Y) = \mathbf{v}^{\prime}(Y)$$

$$U^{\prime}(Y) = \frac{Y(Y + \alpha_{-})^{\circ} + (Y + \alpha_{-})^{7} - Y(Y + \alpha_{-})^{7} - 3Y}{\alpha_{-}}$$

فوجد صعوبة في إيجاد هذه النهاية، كيف سيجد همّام $v(\tau)$ ؟

قاعدة (١):

إذا كان σ (س) = ج حيث ج عدد حقيقي، فإن σ' (س) = صفر. \forall س \in ح.

$$\mathbf{v}^{\prime} \circ \mathbf{v}^{\prime} \circ \mathbf{v}^{\prime$$

إذا كان σ (س) = m^{ν} فإن = σ^{ν} (س) = ν معدد حقيقى.

هُ مثال (٢): أجد المشتقة الأولى <u>حص</u> في كل من الحالات الآتية:

$$\cdot \neq \omega$$
 , $\omega = \omega$

الحل: أ) ص = س

1
 $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$

$$\frac{m^{-}}{8} = {}^{1}m^{-} = {}^{1-m^{-}}m \times m^{-} = \frac{8m^{-}}{8m^{-}}$$

$$< \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{1}} =$$

قاعدة (٣):

إذا كان الاقترانان $\mathfrak{O}(m)$ ، هـ (س) قابلين للاشتقاق عند m، وكانت $\mathfrak{f} \in \mathfrak{F}$ وكان هـ $\mathfrak{m}(m) = \mathfrak{f}$ $\mathfrak{O}(m)$ ،

فإن هـ/(س) = أ
$$\sigma'(m)$$
.

 $(-1)^*$ إذا كان $(-1)^*$ إذا كان $(-1)^*$ إذا كان $(-1)^*$

الحل:
$$\mathfrak{G}(m) = 7m^{\circ}$$

$$\mathfrak{G}^{\prime}(m) = 7 \times 0m^{\circ - 1} = .1m^{3}$$

$$\mathfrak{G}^{\prime}(-1) = .1 \times (-1)^{3}$$

$$= .1 \times 1 = .1$$

قاعدة (٤):

إذا كان الاقترانان ك(س)، ع(س) قابلين للاشتقاق عند س، وكان $\mathfrak{V}(m)=\mathfrak{L}(m)+\mathfrak{J}(m)$ فإن $\mathfrak{V}^{\prime}(m)=\mathfrak{L}^{\prime}(m)+\mathfrak{J}^{\prime}(m)$

قاعدة (٥):

إذا كان الاقترانان ك(س)، ع(س) قابليـن للاشـتقاق عنـد س، وكان $\mathfrak{O}(m)=\mathfrak{L}(m)-\mathfrak{J}(m)$ ، فإن $\mathfrak{O}(m)=\mathfrak{L}(m)-\mathfrak{J}(m)$

ويمكن تعميم القاعدتين السابقتين لتشمل أكثر من اقترانين.

$$\mathbf{U}_{0}^{\prime}$$
 \mathbf{U}_{0}^{\prime} \mathbf{U}_{0}^{\prime}

$$\frac{1}{\omega^{(m)}} = \frac{\omega^{(m)} - \omega^{(m)}}{\omega} = \frac{1}{\omega^{(m)}}$$

تمارين ومسائل (٣-٣)

.
$$m - m = id$$
 $m = m^{-1} - m(1 + a)$ $m = m^{-1} - m$ $m = m^{-1} - m$.

س٢: أجد يحص الاقترانات الآتية:

$$\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}}$$

$$=$$
 صفر $\frac{\xi}{\sqrt{m}}$ ، $=$ صفر

س٣: أجد ص/ | في كل حالة مما يأتي: س= ١

$$\overline{ }$$
 $\overline{ }$ $\overline{ }$

قواعد الاشتقاق (٢): (Differentiation Rules

سبق وأن قدمنا في البند السابق قواعد اشتقاق جمع اقترانات وطرحها، وكذلك مشتقة اقتران مضروب في عدد ثابت، وسنتناول في هذا البند مشتقة ضرب اقترانين، ومشتقة قسمة اقترانين.

قاعدة (١):

إذا كان
$$\mathfrak{O}(m)$$
، $\mathfrak{a}(m)$ اقترانين قابلين للاشتقاق، وكان $\mathfrak{b}(m)=\mathfrak{O}(m)\times\mathfrak{a}(m)$ فإن $\mathfrak{b}(m)=\mathfrak{o}(m)\times\mathfrak{a}(m)+\mathfrak{a}(m)\times\mathfrak{o}(m)$ وبالكلمات $\mathfrak{b}(m)=\mathfrak{o}(m)\times\mathfrak{a}(m)+\mathfrak{a}(m)$ مشتقة الاقتران الثانى $\mathfrak{b}(m)=\mathfrak{o}(m)$ مشتقة الاقتران الثانى $\mathfrak{b}(m)=\mathfrak{o}(m)$

$$\frac{\partial u}{\partial v} = \frac{\partial u}{\partial v} = \frac{\partial u}{\partial v} + \frac{\partial u}{\partial v}$$

أفكر وأناقش: هل هناك طريقة أخرى للحل؟

٤٢ =

قاعدة (۲):

اذا كان الاقتران ل(س) = $\frac{\sigma(m)}{a_{-}(m)}$ ، $\sigma(m)$ ، هـ (س) اقترانين قابلين للاشتقاق هـ (س) \pm • فإن:

$$\textbf{U}^{\prime}(\textbf{w}) = \frac{\textbf{a}^{\prime}(\textbf{w}) \times \textbf{v}^{\prime}(\textbf{w}) - \textbf{v}^{\prime}(\textbf{w}) \times \textbf{a}^{\prime}(\textbf{w})}{(\textbf{a}^{\prime}(\textbf{w}))^{\prime}}$$

وبالكلمات ل $^\prime(m)=\frac{||\Delta m||_1 \times \Delta m}{||\Delta m||_2 \times \Delta m}$ وبالكلمات ل

$$^{\circ}$$
 مثال (۳): إذا كان $_{\circ}$ (س) = $\frac{^{\circ}}{^{\circ}}$ ، $_{\circ}$ ، $_{\circ}$ ، أجد $_{\circ}$ (س).

المقام \times مشتقة البسط - البسط \times مشتقة المقام الحل: $\mathcal{O}^{\prime}(m) = \frac{1}{(m)^{3}}$

$$\frac{\mathsf{Y}\times(\mathsf{I}+\mathsf{U}\mathsf{W})-\mathsf{Y}\times(\mathsf{O}-\mathsf{U}\mathsf{Y})}{\mathsf{I}(\mathsf{O}-\mathsf{U}\mathsf{Y})}=$$

$$\frac{17^{-}}{(\circ - \circ 7)} = \frac{(7 + \circ 7) - (1 \circ - \circ 7)}{(7 \circ - \circ 7)} = \frac{17}{(7 \circ - \circ 7)}$$

$$(\omega) = \frac{\mathbb{A}(\omega) \times \mathbb{O}'(\omega) - \mathbb{O}(\omega) \times \mathbb{A}'(\omega)}{(\mathbb{A}(\omega))^{\mathsf{T}}}$$

$$U(7) = \frac{\mathbb{A}(7) \times \mathbb{Q}^{1}(7) - \mathbb{Q}(7) \times \mathbb{A}^{1}(7)}{(\mathbb{A}(7))^{7}}$$

$$\frac{7}{(7)^{7}} = \frac{7 \times (7)}{(7)^{7}} = 7$$

$$^{-}\Lambda=^{-}\Upsilon$$
 $^{-}\Lambda$ $^{-}$ $^{-}\Lambda$ $^{-}$ $^{-}$

$$\mathbf{G}^{\prime}(1) = \frac{(1+1) \times \mathbf{a}^{\prime}(1) - \mathbf{a}(1)}{(7)^{7}}$$

$$= \frac{7\mathbf{a}^{\prime}(1) - \mathbf{a}(1)}{3}$$

$$= \frac{7 \times 7 - 7}{3}$$

تمارين ومسائل (٣-٤)

س١: أجد يحص لكل من الاقترانات الآتية:

أ.
$$ص = (۲ س + o) (۳ - m^{"})$$

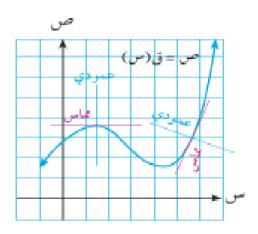
$$\gamma = \frac{m}{m + m}$$
 ب. $\gamma = \frac{m}{m + m}$ س $\gamma = 1$

- w^{2} : أجد $w^{\prime}(r)$ علماً بأن $w(w) = w^{2} w + o$.
- w^* : إذا كان $w(w) = w^1 + w^2$ ، وكان $w(w) = w(w) + w^2$ إذا كان $w(w) = w^1 + w^2$ $\int_{-\infty}^{\infty} (\tau)^{\prime} d\tau$
 - $(\gamma)^{\prime}$ ب جد $(\gamma)^{\prime}$
- w_0 : $|\psi_1| = w^T \cup (w) + \omega(w)$, $\psi_2| = 0$, $\omega(w) = w^T \cup (w) + \omega(w)$ فما قيمة و¹(- ١)؟

تطبيقات هندسية (المماس والعمودي): Tangent Line

- ميل المماس المرسوم لمنحنى الاقتران ص $= \mathbf{v}(m)$ عند النقطة (m, m, m) الواقعة عليه يساوي $\mathbf{v}'(m, m)$ ومعادلة المماس هي: $\omega - \omega_{\scriptscriptstyle \parallel} = \gamma(\omega_{\scriptscriptstyle \parallel} - \omega_{\scriptscriptstyle \parallel})$ ، حيث $\gamma = \sigma'(\omega_{\scriptscriptstyle \parallel})$ ، $\omega_{\scriptscriptstyle \parallel} = \sigma(\omega_{\scriptscriptstyle \parallel})$.
- ميل العمودي على منحنى الاقتران ص = $\mathfrak{o}(m)$ عند النقطة (m_1, m_2) الواقعة عليه يساوي $\frac{1}{n}$, $\frac{1}{n}$ ومعادلة العمودي على المنحنى هي: $\omega - \omega_{0} = \frac{-1}{2} (\omega - \omega_{0})$ ، حيث $\sigma = \omega^{1}(\omega_{0})$ ، $\omega_{0} = \omega^{1}(\omega_{0})$.

عندما يكون المماس أفقياً فإن ميله يساوي صفراً، ويكون موازياً لمحور السينات.



المشتقة الأولى للاقتران $\mathbf{o} = \mathbf{o}(\mathbf{m})$ عند $\mathbf{m} = \mathbf{m}$ تمثل ميل المماس لمنحنى الاقتران عند النقطة التي إحداثها السيني = س، ، وبمعرفة نقطة التماس (س، ص) يمكننا إيجاد معادلة المماس لمنحنى الاقتران، ومعادلة العمودي عليه.

$$*$$
 مثال (۱): أجد ميل المماس لمنحنى الاقتران $\mathbf{o}(\mathbf{w}) = \mathbf{w}^{\mathsf{T}} - \mathbf{w}^{\mathsf{T}} + 1$ عندما $\mathbf{w} = \mathbf{w}$.

الحل: ميل المماس عند (
$$m = m$$
) هو $\mathfrak{G}^{\prime}(m)$
 $\mathfrak{G}^{\prime}(m) = m m^{\prime} - m$
 $\mathfrak{G}^{\prime}(m) = m \times m^{\prime} - m$
 $\mathfrak{G}^{\prime}(m) = m \times m^{\prime} - m \times m$
 $\mathfrak{G}^{\prime}(m) = m \times m^{\prime} - m \times m$
 $\mathfrak{G}^{\prime}(m) = m \times m^{\prime} - m \times m$
 $\mathfrak{G}^{\prime}(m) = m \times m^{\prime} - m \times m$

$$\frac{m}{m}$$
 عند النقطة (۱، $\frac{1}{1}$) الواقعة عليه. $\frac{m}{m}$ عند النقطة (۱، $\frac{1}{1}$) الواقعة عليه. الحل: معادلة المماس هي:

$$\begin{array}{l}
\omega - \omega, = \gamma(\omega - \omega,)\\
\omega - \omega, = \gamma(\omega, \omega, \omega,) = (1, \frac{\gamma}{\gamma})\\
\omega + \omega, = (\omega, \omega, \omega, \omega, \omega) = \gamma = \omega/(1)\\
0 & (\omega' + 1) \times \pi \omega') - (\omega'' \times \gamma \omega)\\
0 & (\omega' + 1) \times \pi \omega') - (\omega'' \times \gamma \omega)\\
0 & (1) = \frac{((\omega' + 1) \times \pi \times 1^{\gamma} - (\omega'' \times \gamma \omega))}{((\omega' + 1)^{\gamma})}\\
= \frac{\gamma \times \gamma \times \gamma}{\gamma}\\
= \frac{\gamma \times \gamma \times \gamma}{\gamma}\\
= \frac{\gamma}{\gamma}\\
= \frac{1}{2}\\
= \frac{1}{2}\\
= \frac{1}{2}\\
= (1 - \omega)$$

 $1 - \omega = \frac{1}{2} - \omega$

 $= \frac{1}{2} + \omega - \omega$

مثال (٣): أجد النقطة على المنحنى $ص = \mathfrak{o}(m) = m^7 - 3m + 0$ ، والتي يكون عندها المماس أفقياً.

الحل: نقطة التماس هي $(m_1, m_2) = (m_1, m_2)$ بما أن المماس أفقي فإن ميل المماس = صفر $\mathfrak{o}'(m_1) = \mathfrak{o}$ $\mathfrak{o}'(m_2) = \mathfrak{o}$ $\mathfrak{o}'(m_1) = \mathfrak{o}$ $\mathfrak{o}'(m_2) = \mathfrak{o}$

 $(u^* + 1)(w + 1)$ عند النقطة العمودي على المماس لمنحنى الاقتران $(u^* + 1)(w + 1)$ عند النقطة الواقعة عليه.

الحل: معادلة العمودي على المماس لمنحنى عند النقطة (١، ٤) هي:

تمارين ومسائل (٣-٥)

- -س : أجد ميل المماس لمنحنى الاقتران $\sigma(m) = \frac{m^7 + 7}{m + 7}$ س ± 7 ، عندما m = 7 .
- س٢: أجد معادلة العمودي على المماس لمنحنى الاقتران $\mathfrak{o}(m) = m^7 + 7m^7 m + 1$ عند النقطة (١،٠) الواقعة عليه.
 - س٣: أجد النقطة الواقعة على منحنى الاقتران $\mathbf{o}(m) = m^7 7m + o$ التي يكون المماس عندها أفقياً.
- سع: أجد معادلة المماس المرسوم لمنحنى الاقتران $\mathfrak{o}(m)$ عند النقطة (٠، ٧) الواقعة عليه، ويعامد المستقيم الذي ميله = $-\frac{1}{m}$.
- س٥: إذا كان $\mathfrak{G}(m) = \{m^7 + 6m 7\}$ ، وكان ميل المماس لمنحنى $\mathfrak{G}(m)$ عندما (m = 1) يساوي ١١، أجد قيمة الثابت $\{m, m\}$.

قاعدة السلسلة (مشتقة الاقتران المركب) Chain Rule:

قاعدة السلسلة:

 $17 = \lambda \times 7 =$

إذا كان هـ(س) اقتراناً قابلاً للاشتقاق عند س، وكان ق(س) قابلاً للاشتقاق عند هـ(س) فإن الاقتران المركب $(\mathfrak{g}_{O}(\mathfrak{g}_{O}))$ عند س، ویکون $(\mathfrak{g}_{O}(\mathfrak{g}_{O}))$ هـ $(\mathfrak{g}_{O}(\mathfrak{g}_{O}))$ هـ $(\mathfrak{g}_{O}(\mathfrak{g}_{O}))$ هـ $(\mathfrak{g}_{O}(\mathfrak{g}_{O}))$

(1): إذا كان (2): إذا كان (3) = (3) + الحل: (ن٥٥هـ) (س) = ن (هـ(س)) × هـ (س). L لکن $\mathsf{o}^{\mathsf{L}}(\mathsf{u}) = \mathsf{u}^{\mathsf{L}} + \mathsf{v}$ ، هـ $\mathsf{u}^{\mathsf{L}}(\mathsf{u}) = \mathsf{v}^{\mathsf{L}}$ ومن ذلك (نOهـ) $^{\prime}$ (س) = ن $^{\prime}$ (س $^{\prime}$ + ۱) × ۲س

 $= (\Upsilon(m)^{7} + 1)^{7} + \Upsilon m$, (Lalé!?)

(لماذا؟)

نتيجة (١):

إذا كان
$$\mathbf{o} = \mathbf{v}(3)$$
، $\mathbf{v} = \mathbf{v}(m)$ ، اقترانين قابلين للاشتقاق، فإن $\mathbf{o} = \mathbf{v}(\mathbf{v}(m))$ وبالتالي
$$\frac{\mathbf{v}}{\mathbf{v}} = \mathbf{v}(3) \times \mathbf{v}(m)$$

$$= \frac{\mathbf{v}}{\mathbf{v}} \times \mathbf{v}(m)$$

$$= \frac{\mathbf{v}}{\mathbf{v}} \times \frac{\mathbf{v}}{\mathbf{v}} \times \frac{\mathbf{v}}{\mathbf{v}}$$

$$= \frac{\mathbf{v}}{\mathbf{v}} \times \frac{\mathbf{v}}{\mathbf{v}} \times \frac{\mathbf{v}}{\mathbf{v}} \times \frac{\mathbf{v}}{\mathbf{v}}$$

$$= \frac{\mathbf{v}}{\mathbf{v}} \times \frac{$$

.
$$\frac{s}{s}$$
 $\frac{s}{s}$ $\frac{$

$$\frac{2\sigma_0}{\sin(2s)}$$
 عندما $\frac{2\sigma_0}{\sin(2s)}$ عندما $\frac{2\sigma_0}{\cos(2s)}$ عندما $\frac{2\sigma_0}{\cos(2s)}$ عندما $\frac{2\sigma_0}{\cos(2s)}$ $\frac{2\sigma_0}{\cos(2s)}$

$$(1)^{1}$$
الحل: (ن٥٥هـ (۱) = 0^{1} (هـ (۱)) ×هـ (۱)

نتيجة (٢):

$$\frac{2\omega}{2\omega} = \mathcal{N}(\mathfrak{G}(\omega))^{1-\omega}. \quad \mathfrak{G}(\omega)$$

$$\frac{2 \omega}{2 \omega}$$
 . پذا کانت $\omega = (2 \omega + 7)^{7}$ با جد $\frac{2 \omega}{2 \omega}$.

$$\xi \times {}^{\mathsf{T}}(\Upsilon + \omega \xi) = \Psi(\xi \omega + \Upsilon) \times \xi$$
 الحل: $\xi = \Psi(\xi \omega + \Upsilon) \times \xi$

تمارين ومسائل (٣-٦)

 $\boldsymbol{\omega}$: $|\dot{\boldsymbol{\omega}}(\boldsymbol{\omega}) = \boldsymbol{\omega}^{\mathsf{T}}$, $\boldsymbol{\omega}(\boldsymbol{\omega}) = \boldsymbol{\omega} + 1$ أجد $(\boldsymbol{\omega} \boldsymbol{\Omega} \boldsymbol{\omega})^{\mathsf{T}}(\boldsymbol{\omega})$.

س۳: إذا كان
$$= 3^{7} - 63 + 1$$
، $= 7m + 7$ ، أجد $\frac{2m}{2m}$.

سع: إذا كان
$$(m) = (m^7 - m)^3$$
، أجد (m^7) .

س د: اذا کان
$$\sigma(m) = a(7m^7 + 1)$$
، أجد $\sigma'(1)$ ، علماً بأن $a'(1) = 0$ ، $a'(2) = 7$.

$$w_{1}$$
: إذا كان $w(w)$ ، هـ(w) اقترانين قابلين للاشتقاق على ح بحيث أن: هـ $w(x) = 0$ ، $w(x) = 0$. $w(x) = -1$, هـ($x) = 0$, $w(x) = 0$, أجد $w(x) = 0$, ($x) = 0$).

القيم القصوى (Extreme Values):

••• تعریف: *

إذا كان $= \mathbf{v}(m)$ اقتراناً وكانت $= -\mathbf{v}(m)$ اقتران، فإنه يقال أن $\mathbf{v}(-\mathbf{e})$:

أ. قيمة عظمى محلية للاقتران، إذا كانت v(-) > v(m) لجميع قيم س المجاورة لِ ج.

ب. قيمة صغرى محلية للاقتران، إذا كانت $v(z) \leq v(z)$ لجميع قيم س المجاورة ل ج.

استخدام المشتقة الأولى لإيجاد القيم القصوى المحلية:

إن التمثيل البياني لأي اقتران على مجاله يساعد في تحديد نقط القيم القصوى المحلية للاقتران، ولكن: كيف تساعدنا المشتقة الأولى لهذا الاقتران في تعيين القيم القصوى المحلية له؟

أتأمل الأشكال الآتية، وألاحظ العلاقة بين إشارة $oldsymbol{\sigma}^{\prime}(m)$ والقيم القصوى للاقتران.



في الشكل (أ): $\sigma(+)$ قيمة عظمى محلية للاقتران $\sigma(m)$ ، $\sigma'(+) = -m$ وغي الشكل (أ): $\sigma(m)$ تغيرت من موجبة لقيم m > + m

في الشكل (ب): $\mathfrak{o}(+)$ قيمة صغرى محلية للاقتران $\mathfrak{o}(-)$ ، $\mathfrak{o}(+)$ = صفر، إشارة $\mathfrak{o}(-)$ تغيرت من سالبة لقيم - جـ.

في الشكل(ج): $\sigma'(z) = -0$ ليست قيمة في الشكل(ج): $\sigma'(m)$ موجبة لقيم m > z. $\sigma'(z)$ ليست قيمة قصوى محلية للاقتران $\sigma(m)$.

ماذا تستنتج؟

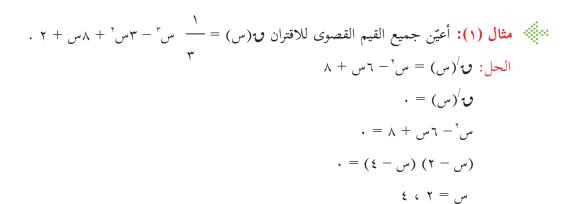
* سنقتصر في دراستنا للقيم القصوى على الاقترانات كثيرة الحدود المعرفة على ح

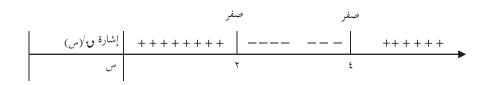
إذا كان $\sigma(m)$ اقتراناً قابلاً للاشتقاق، وكانت $\sigma'(r) = m$ صفراً، حيث $r \in A$ مجال $\sigma(m)$ ، فإن:

أ. إذا تغيرت إشارة $\sigma^{(m)}$ من موجبة لقيم m < + إلى سالبة لقيم m > + فإن $\sigma(+)$ قيمة عظمى محلية للاقتران $\sigma(m)$.

ب. إذا تغيرت إشارة $\sigma^{/}(m)$ من سالبة لقيم m < + إلى موجبة لقيم m > + فإن $\sigma(+)$ قيمة صغرى محلية للاقتران $\sigma(m)$.

يسمى هذا باختبار المشتقة الأولى للقيم القصوى.





إشارة $\sigma'(m)$ تغيرت من موجبة حيث m < 7 إلى سالبة حيث $m > 7 \rightarrow \sigma(7)$ قيمة عظمى محلية للاقتران $\sigma(m)$. إشارة $\sigma'(m)$ تغيرت من سالبة حيث m < 3 إلى موجبة حيث $m > 3 \rightarrow \sigma(3)$ قيمة صغرى محلية للاقتران $\sigma(m)$. القيمة العظمى المحلية = $\sigma(7) = \frac{77}{m}$ القيمة الصغرى المحلية = $\sigma(3) = \frac{77}{m}$

* مثال (۲): أعيّن القيم القصوى للاقتران = $m^7 - 7m + 9$.

$$7-m = 7 m - 7$$
الحل: $m \cdot (m)$

$$\boldsymbol{\sigma}^{\prime}(\omega) = \boldsymbol{\sigma}^{\prime}$$

$$\tau = \tau - \tau$$

إشارة $\sigma'(m)$ تغيرت من سالبة حيث $m < \pi$ إلى موجبة حيث $m > \pi \longrightarrow \sigma(\pi)$ قيمة صغرى محلية للاقتران $\sigma(m)$. . = 9 + ۱۸ - 9 = $\mathfrak{O}(\mathfrak{m})$ القيمة الصغرى المحلية

إذا كان $= m^7 - 11m - 0$ ، $m \in -7$ أجد قيم m التي عندها قيم قصوى للاقتران m m

الحل: $\sigma^{\prime}(m)=\dots$ الحل

$$\cdot = 17 - 70$$

$$\cdot = \xi - {}^{\mathsf{Y}}$$

ألاحظ أن إشارة $\sigma^{/}(m)$ تغيرت من موجبة حيث $m<^{-7}$ إلى سالبة حيث $m>^{-7}$ عند ($m=^{-7}$) يوجد قيمة عظمي محلية للاقتران ق(س).

اِشارة $\sigma'(m)$ تغیرت من سالبة حیث m < 7 اِلی موجبة حیث m > 7 حول $(m = 7) \rightarrow 3$ عند (m = 7) یوجد قيمة صغرى محلية للاقتران ن(س). لم تتغير إشارة $\sigma/(m)$ حول (m=0) ومنها لا توجد قيمة قصوى محلية للاقتران $\sigma(m)$.

س =،

تمارين ومسائل (٣-٧)

· س١: أعيّن القيمة/القيم القصوى المحلية إن وجدت لكل من الاقترانات الآتية:

أ.
$$\boldsymbol{\mathcal{O}}(m) = 3m - 7m^7$$
 ، $m \in \mathcal{F}$

$$\psi$$
. ω (ω) = ω (ω) ω = ω

$$c. \ \boldsymbol{\mathcal{O}}(m) = -m^{7} + n + n + n \ , \ m \in \mathcal{J}$$

 $^{-7}$ فما تان للاقتران $\mathbf{v}(m) = ^{-}$ m' + p ، $m \in ^{-7}$ فما نام خطمی محلیة عند $m = ^{-7}$ فما قيمة ب؟

ست: إذا كان $o(m) = m^7 - o$ ، $m \in \sigma$ أبيّن أنه لا توجد للاقتران o(m) أية قيم قصوى.

س٤: الشكل الآتي يبين إشارة ق/رس)، جد قيم س التي عندها قيم قصوى للاقتران ق(س) وأبيّن نوعها، علماً بأن ق(س) كثير حدود، معرف على ح.

ورقة عمل

- (۱) ما ميل المستقيم القاطع لمنحنى الاقتران v(m) في النقطتين أ (۱، v) ، v(m) ، v(m)
- ۲) إذا كان متوسط التغير للاقتران $\mathbf{o}(m) = m^{2} + m$ عندما تتغير س من ۲ إلى أ يساوي ٦ فما قيمة الثابت أ ؟
- $(m) = m^7 + 6m^7 m$ عند النقطة التي إحداثيها السيني $(m) = m^7 + 6m^7 m$ عند النقطة التي إحداثيها السيني $(m) = m^7 + 6m^7 m$
 - ع) أجد القيم القصوى للاقتران $\boldsymbol{v}(m) = m^{"} + "m^{"} + "$

نموذج اختبار

س ١: أختار رمز الإجابة الصحيحة لكل مما يأتي:

۱) إذا كان متوسط تغير الاقتران $\mathfrak{o}(m)$ في الفترة [-٤ ، ٢] يساوي \mathfrak{m} ، $\mathfrak{o}(-3) = 7$ ما قيمة $\mathfrak{o}(7)$ ؟

(٤)) إذا كان $\mathfrak{G}(m) = \sqrt{m}$ ما قيمة $\mathfrak{g}'(\xi)$

$$\frac{1}{\xi} \left(\Rightarrow \frac{1}{\xi} - \left(-\frac{1}{\xi} \right) \right)$$

") ما ميل المماس لمنحنى الاقتران $\boldsymbol{o}(m) = \frac{\circ}{m^{\gamma} - 1}$ عند $m = \gamma$?

$$\frac{\circ}{r} () \qquad 1\circ (\Rightarrow \qquad \frac{r}{q} - () \qquad \frac{\varepsilon}{q} ()$$

٥) إذا كان $\boldsymbol{\upsilon}(m) = m^{2}$ ، هـ(m) = m - 7 ما قيمة $(\boldsymbol{\upsilon} O a)^{1/2}$

 \boldsymbol{w} : إذا كان متوسط تغير الاقتران \boldsymbol{v} (س) عندما تتغير س من \boldsymbol{w} = ١ إلى \boldsymbol{w} = ٥ هو ١٠، أجد \boldsymbol{v} (٥) علماً بأن \boldsymbol{v} (٢) = ٢؟

سس: إذا كان $\boldsymbol{\upsilon}$ (س) = س $^{\text{\tiny T}}$ +۱، أجد ق $^{\text{\tiny L}}$ (۳) باستخدام تعریف المشتقة عند نقطة.

$$(w) = (w^{7} + 7)$$
 اُجد نہا $(w^{7} + 8) - (w^{7} + 7)$ اُجد نہا $(w^{7} + 8) - (w^{7} + 8)$

 w_0 : إذا كان $\gamma(w) = w^{7} \times v(w)$ جد $\gamma'(w)$ علما بأن $v(w) = r^{7}$ ، v'(w) = 0.

m 3 أجد قيمة الثابت أ التي تجعل ميل المماس لمنحنى الاقتران $m = m^{-1} + m + 1$ مساوياً عندما m = 1.

س٧: عددان طبيعيان مجموعهما ٢٠، أجد العددين ليكون حاصل ضربهما أكبر ما يمكن.