

مدرسة الحسين بن على الثانوية امتحان نهاية الرزمة الأولى لمادة الرياضيات زمن الامتحان: حصتان صفيتان

الصف: الثاني عشر العلمي (د) اليوم و التاريخ : الاثنين ٩ / ١١ / ٢٠٢٠م

الاسم :

السؤال الأول: اكتب رمز الإجابة الصحيحة في الجدول أدناه

$$(1)$$
 إذا كان $\mathcal{O}(w) = \begin{cases} w^{7} & w < 0 \\ w \geq 0 \end{cases}$ فإن جميع قيم w التي تجعل $(1)^{(v)}(v)$ موجودة : (1) كان (1) (2) (2) كان (3) (4) كان $(4$

$$(7)$$
 إذا كانت نها $(m+7^{\dagger})^{\circ} = \frac{7}{7}$ ، فإن قيمة / قيم الثابت أ هي : $\frac{7}{7} = \frac{7}{7} + \frac{7}{7} = \frac{7}{7}$ ، فإن قيمة / قيم الثابت أ هي : $\frac{7}{7} = \frac{7}{7} + \frac{7}{7} = \frac{7}{7$

(٣) متوسط تغير الاقتران
$$\mathcal{O}(\mathbf{w}) = \frac{1}{\mathbf{w}} + \mathbf{z}$$
 في الفترة $[1, \mathbf{v}], \mathbf{w}, 1, \mathbf{v}, \mathbf{z} \in \mathbb{Z}^*$ يساوي $(1, \mathbf{v}) = \frac{1}{\mathbf{v}} + \mathbf{v}$ (د) $\frac{1}{\mathbf{v}} + \mathbf{v}$ (د) $\frac{1}{\mathbf{v}} + \mathbf{v}$ (د) $\frac{1}{\mathbf{v}} + \mathbf{v}$

(\circ) إذا كانت ف= أه 1 ، 1 ، 2 هي معادلة الحركة لجسيم يتحرك على خط مستقيم ، حيث أ، م عددان ثابتان ، ف المسافة بالأمتار ، له الزمن بالثواني ، فإن تسارع الجسيم عندما يقطع مسافة ٣ أمتار يساوى

$$(7)$$
 إذا كان $\mathfrak{G}''(w) = \frac{1}{1-w^{7}}$ ، هر $(w) = \neq 1$ ، فإن $(\mathfrak{G}' \circ a)'(w) = \frac{1}{1-w^{7}}$ ، هر $(7) = \neq 1$ ، فإن $(7) = 1$ ، فياس $(8) = 1$ ، فياس (8)

$$=\frac{\omega s}{\omega s}$$
 اذا كان لو $(w+\omega)=\omega+\omega$ ، فإن (v)

٧	7	0	£	۲	۲	•	الفرع
ب	Í	٦	ج	Í	ج	ب	الإجابة

$$(1-(T-)\upsilon$$
 ، $\xi=(T-)\upsilon$ ، $\xi=$

عندما
$$\mathcal{U} = \mathsf{Y} = \mathcal{U} = ((\frac{1}{\mathsf{Y}}))$$
 عندما $\mathcal{U} = \mathsf{Y} = \mathcal{U}$ عندما $\mathcal{U} = \mathsf{Y} = \mathcal{U}$

.. نقطة التماس هي : (١،٢)

$$\frac{1-\sqrt{2}}{\sqrt{2}} \times (\frac{1}{2})' \mathbf{a} \times ((\frac{1}{2})\mathbf{a})' \mathcal{U} = \frac{2}{2}$$

$$\mathsf{Y} = \frac{1-\gamma}{\mathsf{Y}} \times \mathsf{E} = \frac{1-\gamma}{\mathsf{E}} \times \mathsf{Y} \times (\mathsf{Y} - \mathsf{Y}') = \frac{1-\gamma}{\mathsf{Y}(\mathsf{Y})} \times (\frac{1}{\mathsf{Y}}) \times \mathsf{A} \times ((\frac{1}{\mathsf{Y}}) \times \mathsf{Y} \times \frac{1-\gamma}{\mathsf{Y}} = -\mathsf{Y} \times \mathsf{A} \times (-1) \times (-1)$$

$$\therefore \text{ as clib is like } M_{\text{as}} = 0 - 0 = 0 + 0 = 0$$

$$\omega - 1 = -\gamma(\omega - \gamma) \Leftrightarrow (\gamma - \omega) + 0$$

السؤال الثالث: قذف جسم رأسيًا للأعلى من قمة برج بحيث إن ارتفاعه عن قمة البرج بالأمتار بعد له ثانية يعطى بالعلاقة ف(لم) = ٠ ٢ س – ٥ س^٢ ، جد : <٦علامات>

- (١) ارتفاع البرج علمًا بأن أقصى ارتفاع للجسم عن سطح الأرض يساوي ٧٠ م
 - (٢) سرعة الجسم عندما يصل منتصف البرج

الحل :

(١) نجد أقصى ارتفاع للجسم عن قمة البرج

$$|T = v| \leftarrow \cdot = v \cdot \cdot - T \cdot \leftarrow \cdot = (v)$$

.. أقصى ارتفاع للجسم عن قمة البرج هو:

$$\langle \Upsilon \cdot = \Upsilon \cdot - \xi \cdot = \Upsilon(\Upsilon) \circ - \Upsilon \times \Upsilon \cdot = (\Upsilon) \circ$$

ارتفاع البرج = ٧٠ - ٢٠ - ٥ م

$$\mathbf{v}(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v} - \mathbf{o} \mathbf{v}^{\mathsf{T}}$$

$$\mathbf{v}(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v} - \mathbf{v} \cdot \mathbf{v}$$

$$\mathbf{v}(\mathbf{v}) = -\mathbf{v} \cdot \mathbf{v}$$

(٢) عندما يصل الجسم متنصف البرج يكون على ارتفاع ٢٥ م أسفل قمة البرج

$$\cdot = \circ - \lambda \xi - \lambda \psi \leftarrow \zeta \circ - \xi - \lambda \psi \leftarrow \zeta \circ - \xi - \xi \circ \psi$$
 ف (λ) ف (λ)

$$[\circ = \nu] \cdot (X) \cdot - = \nu \iff (\circ - \nu)(1 + \nu) \iff$$

ن. سرعة الجسم عندما يصل متنصف البرج
$$3(0)=\cdot 1 \cdot -1 \cdot -1$$
ث.

$$\left(\frac{1}{1-1}+\omega\right)\frac{1-1}{1-1}=\frac{1}{1-1}$$
 السؤال الرابع : إذا كان $\omega+d$ $=(\omega-1)$ ، فأثبت أن : $\omega'=\frac{1}{1-1}$

<٦علامات>

الحل:

نشتق الطرفين ضمنيًا بالنسبة لـ س:

$$\begin{aligned}
& \cdot = (\omega + '\omega \times \omega) \times (\omega \omega)^{1} | \omega + 1 \\
& \cdot = (\omega - \omega)^{1} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} (\omega - \omega)^{2} | \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\
& \cdot = (\omega - \omega)^{2} | \omega - \omega - \omega \\$$

$$(w)$$
 لورس (w) ، (w) السؤال الخامس : إذا كان (w) اورس (w) السؤال الخامس : إذا كان (w) الورس (w) المؤلل الخامس : إذا كان (w) المؤلل الخامس : إذا كان (w) المؤلل الخامس : إذا كان (w) المؤلل الخامس : إذا كان متوسط تغير (w) المؤلل الخامس : إذا كان متوسط تغير (w) المؤلل المؤلل

الحل: على الرابط التالي

https://youtu.be/gcrrrjuxKHY