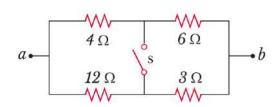

اختبار الرزمة الثانية "الوحدة الثانية"

اختر الإجابة الصحيحة


1 إذا وُصّلت 5 مقاومات مقدار كل منها Ω 1 على التوازي إلى فرق جهد مقداره v 5 فإن شدة التيار المار في كل مقاومة بوحدة A تساوى:

2 في الشكل المجاور المفتاح مغلق، ماذا يحدث عند فتح المفتاح:

ب. قراءة الأميتر تقل

أ. قراءة الأميتر تزداد

ق الشكل المجاور قيمة المقاومة المكافئة بين a, b والمفتاح مغلق تساوي:

ب. Σ 5

أ. Ω 1.2

أ. 0.25

د. Ω9

ج. Ω 6

طول r وطول لا مقطع سلك طوله L بحيث مقاومته تكافئ مقاومة أربعة أسلاك من نفس النوع نصف قطر كل منها r وطول كل منها L وطول كل منها L موصولة على التوالي

د. 4r

ج. 2r

ر. 0.5r

أ. 0.25r

5جميع ما يلي من وحدات كثافة شدة التيار الكهربائي <u>ما عدا</u>:

د. A/m²

 $V/m^2\Omega$ ج-

*د.*C/m².s

 A^2/m .

6 أي من الكميات التالية تقاس بوحدة A/v.m

د. الكثافة الحجمية للإلكترونات

ج. ثابت الموصلية

ب. المقاومية

أ. كثافة شدة التيار

7 سلك فلزي مقاومته R ومساحة مقطعه العرضي A موصل بين نقطتين فرق الجهد بينهم V إذا أُعيد تشكيله ليزداد طوله إلى الضعف فإن السرعة الانسياقية للإلكترونات الحرة فيه

د. تقل للربع

ج. تقل للنصف

ب. تزداد للضعف

أ. تبقى ثابتة

 $V_{(v)}$ H Z Y X I(A)

8 رُسمت العلاقة بين بيانياً لأربعة موصلات مختلفة بين التيار المار فيها وفرق الجهد الكهربائي بين طرفيها كما في الشكل المجاور، أي منها هذه الموصلات لها أكبر مقاومة

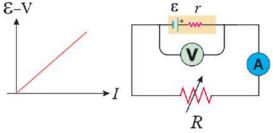
د. ۲

ب.H ج. Z

أ. 🗙

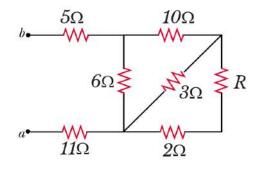
الوحدة الثانية: الكهرباء المتحركة– أ. سمير أبو ناصر 0592502650

9 الشكل المجاور يبين موصل مساحة مقطعه غير منتظمة يسري فيه تيار كهربائي بالاتجاه المبين، اعتباداً على الشكل أي العبارات التالية صحيحة:


أ. السرعة الانسياقية أكبر ما يمكن عند النقطة B

ب. شدة المجال الكهربائي أكبر ما يمكن عند النقطة A

ج. شدة التيار الكهربائي أقل ما يمكن عند النقطة C

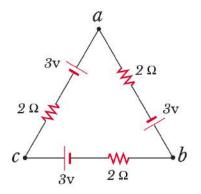

د. شدة التيار الكهربائي لوحدة المساحة أقل ما يمكن عند النقطة A

الخطية التالية: فإن ميل الخط المستقيم يمثل: من خلال تغيير المقاومة R فتم الحصول على العلاقة الخطية التالية: فإن ميل الخط المستقيم يمثل:

r. ب

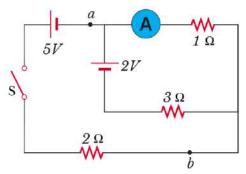
ج. R+r د. R-r

في الشكل المجاور احسب مقدار المقاومة R إذا علمت أن المقاومة

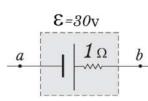

المكافئة تساوي 20Ω (4Ω)

2

موصل فلزي طوله $2\pi m$ ونصف قطر مقطعه 10^{-8} 10^{-8} ومقاوميته 10^{-8} وكثافة الشحنة الحجمية لمادته $2\pi m$ موصل فلزي طوله $2\pi m$ ونصف قطر مقطعه $2\pi m$ المصدر جهد عبر مقطعه شحنه مقدارها $2\pi m$ في زمن قدره $2\pi m$ احسب:


1 مقاومة الموصل (0.02Ω) السرعة الانسياقية (0.02Ω) مقاومة الموصل

4 سلك مقاومته 40Ω، احسب مقاومة سلك آخر من نفس المعدن طوله ضعفي طول السلك الأول ونصف قطره أربعة أمثال نصف قطر الأول (5Ω)



- وصلت ثلاث بطاريات على التوالي في دارة مُغلقة كما في الشكل الموضح، إذا علمت أن القوة الدافعة الكهربائية لكل منها 3v ، والمقاومة الداخلية مهملة والمقاومات الخارجية متساوية قيمة كل منها 2Ω ، احسب:
 - 1.5A) شدة التيار المار في كل من البطاريات الثلاث. (1.5A)
 - 2) أثبت أن جهود النقاط a,b,c متساوية.

الوحدة الثانية: الكهرباء المتحركة– أ. سمير أبو ناصر 0592502650

- 6 اعتماداً على الدارة المجاورة، احسب:
- 1 قراءة الأميتر والمفتاح S مفتوحاً (0.5A)
 - 2 قراءة الأميتر والمفتاح S مغلقاً (1A)
 - (-1v) مغلقاً Vab والمفتاح S مغلقاً

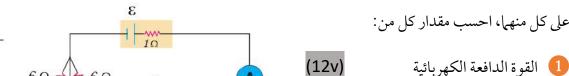
12

10

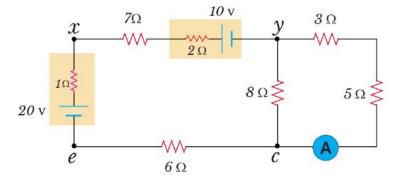
6

0

7 في الشكل المجاور بطارية مقاومتها الداخلية 10 قوتها الدافعة الكهربائية 300 وصل طرفيها أو V_{ab} بمقاومتين V_{ab} على التوالي، فكان فرق الجهد بين النقطتين V_{ab} وعندما فصلت المقاومتان وأعيد توصيلها على التوازي ووصلتا بطرفي البطارية أصبح فرق الجهد بين النقطتين

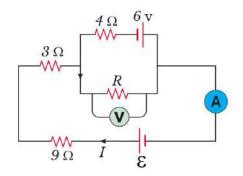

 $(3\Omega, 6\Omega)$. R_1,R_2 ، احسب مقدار كل من $V_{ab}=20v$

اذا مُثلت التغيرات في الجهد عبر الدارة الكهربائية البسيطة المبينة في الشكل بالرسم البياني المجاور، بالاعتماد على القيم المثبتة V(v)


> -\\\ 2Ω

R

 6Ω



- (2v) الهبوط في الجهد (2v)
- 3 قراءة الأميتر (2A)
- (5 Ω) المقاومة المكافئة لمجموعة المقاومات الخارجية Φ
 - 5 المقاومة المجهولة (6Ω)
 - 9 لاحظ الدارة المقابلة ثم احسب:
 - (0.25A) قراءة الأميتر
 - (14.5v) (Vxx) x,y فرق الجهد بين 2
- (1.75W) xec القدرة الداخلة والمستنفدة في الفرع
 - 4) القدرة الداخلة والمستنفدة في الدارة. (10W)

10 في الدارة الموضحة، إذا كانت قراءة الفولتميتر 0.75V وقراءة الأميتر 2.2A ،

احسب

- 1 مقدار القوة الدافعة الكهربائية ع (27v)