

الرياضيات

"التكنولوجي"

الفترة الثالثة

جميع حقوق الطبع محفوظة ©

دولة فلسطين

مرك المناهج

mohe.ps ا mohe.pna.ps ا moehe.gov.ps ا ساحت المنابع ال

حي الماصيون، شارع المعاهد ص. ب 719 - رام الله - فلسطين pcdc.mohe@gmail.com ☑ | pcdc.edu.ps ��

المحتويات

٤	التكامل Integration
٧	التكامل غير المحدود Indefinite Integral
١٣	قواعد التكامل غير المحدود Rules of Indefinite Integral
١٧	التكامل المحدود Definite Integral
۲۱	خصائص التكامل المحدود Definite Integral Properties
	التكامل بالتعويض:Integration by Substitution

يتوقع من الطلبة بعد دراسة هذه الوحدة المتمازجة والتفاعل مع أنشطتها أن يكونوا قادرين على توظيف التكامل في الحياة العمليّة من خلال الآتي:

- ١. التعرف إلى مفهوم التكامل غير المحدود.
 - ٢. إيجاد التكامل غير المحدود.
- ٣. التعرف إلى قواعد التكامل غير المحدود وتوظيفها في إيجاده.
 - ٤. التعرف إلى التكامل المحدود، وحسابه.
 - ٥. التعرف إلى خواص التكامل المحدود وتوظيفها في حسابه.
 - ٦. استخدام طريقة التعويض في إيجاد بعض التكاملات.
 - ٧. توظيف التكامل غير المحدود في تطبيقات هندسية.

التكامل غير المحدود Indefinite Integral

••• تعریف:

إذا كان الاقتران $\sigma'(m)$ هو المشتقة الأولى للاقتران $\sigma(m)$ ، فإن الاقتران $\sigma(m)$ + جـ يمثل مجموعة الاقترانات التي مشتقتها الأولى $\sigma'(m)$ ، ويسمى بالتكامل غير المحدود للاقتران $\sigma'(m)$ ، أو يسمى بالاقتران الأصلى الذي مشتقته $\sigma'(m)$.

$*$
 مثال (۲): أجد $\int Y \ge m$?

 * الحل: $\int Y \ge m = \mathfrak{G}(m)$ ، حيث $\mathfrak{G}^{\prime}(m) = Y$
 $\mathfrak{G}(m) = Y + + +$
 $\int Y \ge m = Y + + +$
 $\int Y \ge m = Y + +$
 $\int Y \ge m + +$
 $\int Y = m$

همثال (٣): أجد
$$\int_{-\infty}^{\infty} n \, dv$$
 ?

الحل: $\int_{-\infty}^{\infty} n \, dv$ $z = 2 \, (m)$, حيث $2 \, (m) = m^{-1}$

الحل: $\int_{-\infty}^{\infty} n \, dv$ $z = m^{-1} + z$
 $\int_{-\infty}^{\infty} n \, dv$ $z = m^{-1} + z$ (الاقتران الأصلى).

تمارين ومسائل (١-٤)

س١: أكمل الجدول الآتي:

الاقتران الأصلي ن(س) + جـ	المشتقة ن/(س)	
	٤ س ٤	.1
س' + س ۲ + ۲س + جـ		٠٢.
	۲ س + ۱	٠٣
[ع س ^۳ + ۳) کس		٠ ٤

س٢: أضع إشارة √ أمام العبارة الصائبة وإشارة Х أمام العبارة الخاطئة:

i.
$$\int_{0}^{\infty} (0m + 3) z_{m} = \frac{0m^{7}}{7} + 3m$$

$$= - \int (\Upsilon m^{2} + \Upsilon m) \, \delta m = \Gamma m + \Upsilon$$

$$c. \int \frac{1}{w} = e = \frac{0}{w} + e$$

و.
$$\int Y$$
نۍ کونۍ = نۍ $Y + =$

$$\mathbf{w}^{\gamma}. \ \ |\mathbf{c}| \ \ \mathbf{v}(\mathbf{w}) = \int_{\mathbf{w}}^{\mathbf{w}^{\gamma}} \frac{\mathbf{w}^{\gamma}}{\mathbf{v}} \ \mathbf{e}(\mathbf{w}).$$

قواعد التكامل غير المحدود وتطبيقاتة (Rules of Indefinite Integral and its Application)

الحل: المطلوب هو إيجاد الاقتران الأصلى $\boldsymbol{v}(m)$ الذي مشتقته الأولى $\boldsymbol{v}'(m) = \pi$.

$$\sigma_{\mathbb{Z}}(m) = 7m - \sqrt{7}$$

$$\mathbf{o}_{i}(m) = mm +$$
ثابت

هي اقترانات مشتقتها الأولى $\mathbf{v}'(m) = 7$ ، وألاحظ أن الفرق بين هذه الاقترانات هو في الحد الثابت فقط، ولذلك فإن الاقتران الأصلي $\mathbf{v}(m)$ الذي مشتقته $\mathbf{v}'(m) = 7$ هو $\mathbf{v}(m) = 7$ هـ جـ.

قاعدة (١):

$$(1) \int_{-\infty}^{\infty} e^{-x} \int_{-\infty}$$

الحل: ۱) $\int_{-\infty}^{\infty} -\infty = -\infty + -\infty$ الاقتران بدلالة المتغير س.

")
$$\int \frac{1}{\gamma} = 23 = \frac{1}{\gamma} = 3 + \infty$$
 (Weight limiting 3)

مثال (٣): أتأمل الجدول الآتي، وأجيب عن الأسئلة اللاحقة:

۲ + - "س"	<u>س°</u> ٥	٧ + - نسځ	" <u>"</u>	ق(س)
س°	س ؛	س"	س ۲	ن (س)

۱. ما العلاقة بين درجة $\sigma^{\prime}(m)$ و درجة $\sigma(m)$?

٢. ما العلاقة بين معامل الحد الذي يحتوي على س في ق(س) ودرجة ق(س) ؟

الحل: ١. درجة الاقتران $\boldsymbol{\sigma}$ (س) تزيد ١ عن درجة $\boldsymbol{\sigma}'$ (س).

معامل الحد الذي يحتوي على س يساوي مقلوب درجة الاقتران.

$$\int_{0}^{1+\sqrt{2}} w^{2} = \frac{w^{1+\sqrt{2}}}{1+\sqrt{2}} + \frac{1+\sqrt{2}}{2}$$
 عدد حقیقی، $v \neq -1$.

هثال (٤): أجد كلاً من التكاملات الآتية:

$$\frac{1}{7}$$

الحل: أ.
$$\int_{W}^{V} e^{w} = \frac{w^{1+1}}{1+1} + \frac{w}{1+1} + \frac{w^{2}}{1+1} + \frac{$$

$$\frac{1}{\sqrt{7}} = \frac{\sqrt{7}}{\sqrt{7}} + \frac{1}{\sqrt{7}} +$$

$$c. \int_{1}^{7} \sqrt{w^{7}} e^{w} = \int_{0}^{\frac{7}{7}} \sqrt{w^{7}} e^{w} = \int$$

اذا كان الاقتران $oldsymbol{v}$ (س) قابلاً للتكامل، فإن $oldsymbol{v}$ $oldsymbol{v}$ إذا كان الاقتران $oldsymbol{v}$

مثال (ه): أجد التكاملات الآتية:

الحل: أ.
$$\int Y m^7 g m = Y \int m^7 g m = \frac{100^3}{3} + = = \frac{100^3}{4} + = \frac{1000^3}{4} + = \frac{1$$

$$. \int_{0}^{\frac{\pi}{2}} w^{2} g = \frac{\pi}{2} \int_{0}^{\frac{\pi}{2}} g = \frac{\pi}{2} \times \frac{w^{2}}{2} + \frac{\pi}{2} = \frac{\pi}{2} + \frac{\pi}{2}$$

إذا كان ق (س)، هـ (س) اقترانين قابلين للتكامل، فإن:

$$(\mathbf{v} + \mathbf{a})(\mathbf{w}) \geq \mathbf{w} = \int \mathbf{v}(\mathbf{w}) \geq \mathbf{w} + \int \mathbf{a}(\mathbf{w}) \geq \mathbf{w}$$

7.
$$\int (\mathbf{v} - \mathbf{a})(\mathbf{w}) \mathbf{z} = \int \mathbf{v}(\mathbf{w}) \mathbf{z} = \int \mathbf{a}(\mathbf{w}) \mathbf{z}$$

الحل:
$$\int (7س^7 + 3m) \approx m = 7 \int m^7 \approx m + 3 \int m \approx m$$
 الحل: $\int (7m^7 + 3m) \approx m^7 + 7m^7 + 4 = m$

$$\frac{1}{\sqrt{Y}}$$
 مثال (۷): أجد $\frac{1}{\sqrt{Y}}$ عرب $\frac{1}{\sqrt{Y}}$ عرب

يمكن تعميم القاعدة (٤) لأكثر من اقترانين.

الحل:
$$(m + 7)^{7} = (m + 7)(m + 7) = m^{7} + 7m + 9$$

$$\int_{0}^{r} (w + m)^{2} = \int_{0}^{r} (w + r)^{2} = \int_{0$$

$$r^{-} \neq s$$
 ، ع $\neq r^{-}$ ع $\neq r^{-}$ ع $\neq r^{-}$ ع $\neq r^{-}$

$$+ \varepsilon \pi - \frac{\varepsilon}{1} = \varepsilon s = \int \frac{(\varepsilon - \varepsilon)(\varepsilon + \varepsilon)}{(\varepsilon + \varepsilon)} d\varepsilon = \int \frac{(\varepsilon - \varepsilon)(\varepsilon + \varepsilon)}{(\varepsilon + \varepsilon)} d\varepsilon = \int \frac{\varepsilon}{1 + \varepsilon} d\varepsilon = \int \frac{\varepsilon}{1 + \varepsilon} d\varepsilon$$

$$\frac{200}{8}$$
 با خد $\frac{200}{8}$ با خد $\frac{200}{8}$

$$\frac{s_{\infty}}{s_{\infty}} = \frac{s_{\infty}}{r} + \frac{r_{\infty}}{r} + \frac{r_{\infty}}{r} + \frac{s_{\infty}}{r} = \frac{s_{\infty}}{r}$$

الله الله الله الله

إذا كان ميل المماس لمنحنى \boldsymbol{v} (س) عند أي نقطة عليه يعطى بالقاعدة \boldsymbol{v} (س) = \boldsymbol{v} س - ١، أجد قاعدة الاقتران \boldsymbol{v} (س) علماً بأن منحناه يمر بالنقطة (، ، ٧).

$$-\frac{^{7}}{^{7}} = \frac{^{7}}{^{7}} = 0$$
 الحل: $\omega(m) = \int \omega^{7}(m) \, dm = \int (m^{7})^{1/2} \, dm = 0$

منحنى الاقتران يمر بالنقطة (٠، ٧) ومنها $\boldsymbol{\upsilon}(\cdot) = \mathsf{V}$

ن مثال ۱۲:

إذا كان ميل المماس لمنحنى الاقتران هـ (س) عند أي نقطة عليه يعطى بالعلاقة هـ (m) = 3 m + 7، أجد قاعدة الاقتران هـ (س) علماً بأن منحناه يمر بالنقطة (۲،۷).

$$| _{-\infty} | _{-\infty} |$$

لكن منحنى الاقتران هـ (س) يمر بالنقطة (٢ ، ٧)

$$v = (7) = v$$
ومنها ه

$$V - m^{\gamma} + \gamma^{\gamma} = \gamma^{\gamma} + \gamma^{\gamma} = \gamma^{\gamma}$$

تمارين ومسائل (٢-٤)

س١: أجد التكاملات الآتية:

i.
$$\int_{\frac{7}{\pi}} z \omega$$
 $\Rightarrow \sqrt{1 - \sqrt{1 - \omega}}$

د.
$$\int (7m^7 + \pi)$$
 حس هـ. $\int (7m^7 - \frac{7}{m^7} + 1)$ حس و. $\int (2^7 - 2m)$ ، ك ثابت \neq .

- · س۲: أجد [(٢ص ٥)(ص + ٣) وص
- س٤: أجد $\int (7m + 1)(m^7 + m^7 7m + 3)$ عس
- w_0 : | $\dot{\psi}(w) = \int (7w^7 + 6w^7 7w + 3) z_0$, أجد $\dot{\psi}(w)$.
 - m_{1} : إذا كان $m = \int (7m + 7)(m^{7} + 7m)^{\circ} 2m$, أجد $\frac{2m}{2m}$.
- س٧: إذا كان ميل المماس لمنحنى الاقتران $\mathfrak{g}(m)$ عند أي نقطة عليه يعطى بالعلاقة $\mathfrak{g}'(m) = 0$ ، أجد قاعدة الاقتران $\mathfrak{g}(m)$ علماً بأن منحناه يمر بالنقطة (٢ ، ٣).
- س۸: إذا كان ميل المماس لمنحنى الاقتران ك(س) عند أي نقطة عليه تعطى بالعلاقة $(m, m) = (m+1)^{7}$ ، أجد ك(٢) علماً بأن منحنى ك(س) يمر بالنقطة (٠،٢).
- س٩: إذا كان ميل المماس لمنحنى الاقتران ع(س) عند أي نقطة عليه هو (٢س ٥)، أجد معادلة المماس لمنحنى ع(س) عندما = 7 ، علماً بأن منحنى ع(س) يمر بالنقطة (٠، ٣).

التكامل المحدود (Definite Integral):

نشاط (١):

لحساب هذا التغير يلزمنا ق(س)، حيث:

$$\mathbf{v}(\mathbf{w}) = \int \mathbf{v}^{1}(\mathbf{w}) \mathbf{z} \mathbf{w}$$

$$= \int (\cdots) \mathbf{z} \mathbf{w}$$

$$= \mathbf{w}^{7} + \mathbf{w} \mathbf{w} + \mathbf{z}$$

$$= \mathbf{w}^{7} + \mathbf{w} + \mathbf{z}$$

$$= \mathbf{w}^{7} + \mathbf{v} + \mathbf{z}$$

$$= \mathbf{w}^{7} + \mathbf{v} + \mathbf{z}$$

هل نحن بحاجة لمعرفة قيمة الثابت ج لحساب هذا التغير؟

••• تعریف:

إذا كانت ${m o}^{\prime}({m w})$ هي المشتقة الأولى للاقتران ${m o}({m w})$ ، وكان ${m o}^{\prime}({m w})$ قابلاً للتكامل،

فإن
$$\int_{0}^{\infty} (w) e^{-w} = v(v) - v(1)$$
، محدوداً، فإن $\int_{0}^{\infty} v(w) e^{-w} = v(v) - v(1)$ ، محدوداً، وهذا التكامل يسمى تكاملاً محدوداً، عدداً ثابتاً.

$$\frac{r}{r} = (r - \frac{1}{r}) - (r - r) =$$

$$(7)$$
: أجد $\int_{-1}^{7} (7m^{7} - 7m + 1) \approx m$

$$\int_{-1}^{7} (7m^{7} - 7m + 1) \approx m = (m^{7} - m^{7} + m)$$

$$\int_{-1}^{7} (7m^{7} - 7m + 1) \approx m = (m^{7} - m^{7} + m)$$

$$= 9$$

جد س/(س) في كل مما يأتي:

1.
$$O(m) = \int_{0}^{\pi} (\pi m^{7} + 7m) zm$$

$$\mathbf{Y} \cdot \mathbf{U}(\mathbf{w}) = \int_{\mathbf{v}}^{\mathbf{v}} (\mathbf{v} \mathbf{w}^{\circ} - \mathbf{w})^{\mathbf{v}} \mathbf{z} \mathbf{w}$$

أتعلم: مشتقة التكامل المحدود تساوي صفراً.

تمارين ومسائل (٤-٤)

س١: أحسب قيمة كل من التكاملات الآتية:

$$(2) \int_{0}^{7} (6 - 7m^{7}) \approx m$$

$$(3) \int_{0}^{7} \sqrt{m} \approx m$$

$$\int_{1}^{\pi} r \pi \sqrt{1} \int_{1}^{\pi} (1 - \frac{1}{m}) \int_{1}^{\pi}$$

س۳: إذا كان
$$\int_{-\tau}^{t} (7-\tau) \approx 0$$
 وصفراً، فما قيمة / قيم الثابت أ.

وما يأتي: أجد
$$\frac{200}{200}$$
 لكل مما يأتي:

$$\mathring{1}) = \int (\xi m^{7} + \gamma m - 0) e^{-\alpha t}$$

$$(3 m) = \int_{1}^{1} (3 m^{7} + 7 m - 0) s m$$

خصائص التكامل المحدود Definite Integral Properties

نشاط (۱):

خاصية (١): إذا كان
$$\mathfrak{o}(m)$$
 اقتراناً قابلاً للتكامل فإن $\mathfrak{o}(m)$ وس $\mathfrak{o}(m)$ لكل $\mathfrak{o}(m)$

فمثلاً: أ)
$$\int_{1}^{1} (7m^{2} + 7m + 7)$$
 و $m = 1$

(۱) عسب الخاصية (۱)
$$=$$
 مسب الخاصية (۱)

جاصیة (۲): إذا کان
$$\mathfrak{o}(m)$$
 اقتراناً قابلاً للتکامل، فإن: $\int_{1}^{\infty} \mathfrak{o}(m) \, 2m = -\int_{1}^{\infty} \mathfrak{o}(m) \, 2m$

$$^{\circ}$$
 مثال (۱): إذا علمت أن $\int_{1}^{1} \sigma(m) \ge m = \Lambda$ ، أحسب $\int_{1}^{1} \sigma(m) \ge m$?

 $^{\circ}$ حسب الخاصية (۲)

 $^{\circ}$ الحل: $\int_{1}^{1} \sigma(m) \ge m = -\int_{1}^{1} \sigma(m) \ge m = -1$
 $^{\circ}$ مثال (۲): إذا كان $\int_{1}^{1} \sigma(m) \ge m = -1$
 $^{\circ}$ بحد $\int_{1}^{1} -7 \sigma(m) \ge m = -1$
 $^{\circ}$ $\int_{1}^{1} \sigma(m) \ge m = -1$

$$\int_{1}^{\infty} \mathcal{O}(m) \, 2m + \int_{1}^{\infty} \mathcal{O}(m) \, 2m = \int_{1}^{\infty} \mathcal{O}(m) \, 2m$$
 (خاصية الإضافة)

$*$
 مثال (۳): إذا علمت أن $\int_{1}^{7} \sigma(m) \approx m = 7$ ، $\int_{1}^{8} \sigma(m) \approx m = 9$ أجد $\int_{1}^{8} \sigma(m) \approx m$?

الحل:
$$\int_{0}^{1} \sigma(w) \approx w + \int_{0}^{1} \sigma(w) \approx w + \int_{0}^{1} \sigma(w) \approx w$$
 حسب الخاصية (۳)

$$7^- = (9^-) + (7) =$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$| \int_{1}^{2} (w) | v | = | \int_{1}^{2} (w) | v |$$

$$\int_{1}^{2} \mathbf{G}(w) \approx w = \int_{1}^{2} \mathbf{G}(w) \approx w + \int_{1$$

خاصية (٤): إذا كان الاقترانان ق(س) ، هـ(س) اقترانين قابلين للتكامل على [أ ، ب] فإن

$$\int_{0}^{+} \psi(w) \pm \omega(w) \geq w = \int_{0}^{+} \psi(w) \geq w \pm \int_{0}^{+} \omega(w) \geq w$$

تمارين ومسائل (٤-٥)

س٢: أحسب التكاملات الآتية:

اً.
$$\int_{\gamma}^{\pi} (m-\gamma) \mathbf{z}$$
 \mathbf{z} \mathbf{z}

سس: إذا كان
$$\int_{-1}^{1} \mathbf{v}(\mathbf{w}) \ge \mathbf{w} = -\mathbf{w}$$
 ، $\int_{-1}^{1} \mathbf{v}(\mathbf{w}) \ge \mathbf{w} = 3$ ، أجد قيمة الآتي:

$$\int_{1}^{1} -\pi u(m) zm$$
 $= \int_{1}^{1} -\pi u(m) zm$ $= \int_{1}^{1} (\pi u(m) + m) zm$

$$\int_{Y}^{T} (\circ \mathscr{A}(w) - T \mathscr{O}(w)) \geq w$$

Integration by Substitution: التكامل بالتعويض

$$\frac{S}{1} = S$$
 الحل: أفرض أن $S = S$ ومنها ومنها $S = S$ ومنها ومنها $S = S$ الحل: أفرض أن $S = S$ ومنها وم

أعوض في التكامل

$$\int_{\mathbb{T}} ds = \int_{\mathbb{T}} ds =$$

$$\Rightarrow + \frac{(1-7)^{2}}{75} = \Rightarrow + \frac{2}{5} \times \frac{1}{7} =$$

$$\int_{1}^{1} \frac{(1-r_{m}m)}{r_{\xi}} = ms^{r}(1-r_{m}m)$$

$$\frac{1 \circ}{7 \cdot \xi} = \frac{(1 - i \times \tau)}{7 \cdot \xi} - \frac{(1 - i \times \tau)}{7 \cdot \xi}$$

$$\frac{s_{\infty}}{1+\omega t}$$
 الحل: أفرض أن $s_{\infty} = (w^{7} + w^{7} - s_{\infty})$ ومنها $s_{\infty} = (1+w^{7})$ ومنها $s_{\infty} = (1+w^{7})$

أعوض في التكامل

$$\frac{\sigma s}{(1+\omega + 1)(\omega^{2} + \omega - 0)^{2}} = \int_{0}^{\infty} (1+\omega + 1)(\omega)^{2} (1+\omega + 1)(\omega)^{2}$$

$$=\int_{0}^{\infty} -\frac{1}{2} = \int_{0}^{\infty} -\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$$

$$=\frac{(w^{2}+w^{2}-0)^{2}}{5}+\frac{1}{5}$$

تمارين ومسائل (٢-٤)

أجد التكاملات الآتية:

$$wY: \int_{(m-1)^{\circ}}^{\pi} z_{m}$$

$$m_{\mathsf{F}}$$
:
$$\int_{\mathsf{T}}^{\mathsf{T}} (\mathsf{T} - \mathsf{O})(\mathsf{m}^{\mathsf{T}} - \mathsf{O} \mathsf{m} + \mathsf{V})^{\mathsf{T}} \mathsf{Z} \mathsf{m}$$

$$\frac{1}{\omega \Lambda} \int (\omega + \gamma)^{\gamma} \sqrt{\omega^{\gamma} + 3\omega + 6} \approx 2\omega$$

ورقة عمل

(۱) إذا كان
$$\int \sigma'(m) \ 2m = 7m - 3m' + 7$$
، ما قيمة $\sigma'(1)$ ؟

$$^{+}$$
 اِذا کان \int ب z س $=$ ۲، ما قیمة $/$ قیم الثابت ب $^{?}$

ع) إذا علمت أن
$$v'(m) = 3m^{7} + m^{7} - 7m$$
، $v(\cdot) = 7$ أجد $v(\cdot)$.

ه) إذا كان ميل المماس لمنحنى عند أي نقطة عليه يعطى بالعلاقة $\mathfrak{O}^{1}(m) = m - 7m$ ، ما قاعدة الاقتران $\mathfrak{O}(m)$ علماً بأن منحنى $\mathfrak{O}(m)$ يمر بالنقطة (١، ٦).

نموذج اختبار

۱) ما الاقتران الذي يمثل اقتراناً أصلياً للمشتقة
$$oldsymbol{v}^{/}(w)=3$$
 $w^{7}+7$ w

$$(1)^{7}$$
 إذا كان $\int 0^{7} (m) \, 2m = 7m - 3m^{7} + 7$ ، ما قيمة $(1)^{9}$

$$(0, 0)$$
 $(0, 0)$

$$(7)^{\prime}$$
 کان هـ(س) = $\int_{-\infty}^{\infty} (7)^{\prime} + (7)^{\prime} + (7)^{\prime}$ کان هـ(س) = $\int_{-\infty}^{\infty} (7)^{\prime}$

$$^{\circ}$$
 (س) و س $^{\circ}$ $^{\circ}$

$$wy: = \int_{1}^{1} \int_{1}^{1$$