التاريخ: / ۲۰۲۰م مدة الامتحان: ساعتان ونصف

الامتحان الموحد في مبحث الرياضيات للصف الثاني الثانوي العلمي (التوجيهي) السورقة الأولسي

دولة فلسطين وزارة التربية والتعليم مديرية التربية والتعليم / محافظة طولكرم

مجموع العلامات: (١٠٠ علامة) ملاحظة: عدد أسئلة الورقة ستة أسئلة ، اجب عن خمسة اسئلة منها فقط. القسم الأول: يتكون هذا القسم من أربعة أسئلة ، وعلى المشترك أن يجيب عنها جميعا السؤال الأول: (٣٠ علامة) اختر الإجابة الصحيحة ثم ضع إشارة (×) في المكان المخصص في دفتر الإجابة: ? $\frac{(w) \cdot 3 \cdot (w)}{(w) \cdot 7} = \frac{w \cdot 3 \cdot (w)}{(w \cdot 7) \cdot (w)}$? اً) ' ا ب ب ۳-ج) -۲ د) ٦ ۱) ۱ ب د) غير موجوده ٤ (ج ٣) اذا كان متوسط تغير الاقتران هـ (س) في الفتره [٢ ،٤] يساوي ١٠ ، ما متوسط تغير ق(س) في [٢ ،٤] ؟ حيث ق(س) – ٦ = ٣ هـ (س) . اً) ۳۰ ب) ۲۰ جـ) ۲۰ 1 اذا کان ل(س) = ق (m^{7}) + m^{7} ، ق(2) = m^{7} ، ق(2) = m^{7} ، ما قیمة ل(2)ب) ٤ جـ) ٢٠ ٤_ (٢ ه) اذا كان ق(س) = ه جا٣س وكانت ق''(س) = أ ق(س) ، ما قيمة الثابت أ ?٤٥ (أ ٧ (٦ ب) ۹ جـ) -۹ 7 اذا كان $= a^{1}^{m}$ ، ما قيمة المقدار $m^{1} - m^{1} + 1$? د) _هـ^{٢س} أ) ۱۲ هـ^{۲س} ب) صفر جـ) ۳ هـ^{۲س} ٧) ما أصغر قيمه للاقتران ق(س) = س (س ۖ - ٦ س + ٩) حيث س [-٢ ،٥] ؟ ب) ۔ ٠ هـ ب ۱) ۳ د) صفر \wedge) اذا كان ق $(m) = \sqrt{m^2 - 3m}$ ، ما عدد النقاط الحرجه للاقتران ق(m) ? ۱) ۱ ب ۲ ج) ۳ ٤ () يتبع صفحه (۲) لاحظ الصفحه التالبه:

الصفحه الثانيه تابع أسئلة الرياضيات الورقه الأولى – رياضيات ثانى عشر / علمى / / ٢٠٢٠ ١ (٤ (١ - ٤ (١ ٤ (١ (۱۰) اذا کان $س^{2}$ س $ص + ص^{3} = 7$ ، ما قیمة $\frac{c}{c} \frac{c}{w}$ عند النقطه (۱۰ - ۱) ؟ ۱ (۵ ۱- (ب ۲ (ب ۲ (ا (۱۱) اذا کان ق(س) = س ل (\sqrt{m}) ، مع العلم ان ل(۲) = ۳ ، (\sqrt{r}) ، ما قیمة ق(2) ؟ \forall (2 ξ (\Rightarrow ξ - (ψ $\frac{1}{\xi}$ ($\hat{1}$ ١٢) اذا كان ق(س) كثير حدود معرف في الفتره [١٥،١] ويقع منحناه في الربع الأول ومتناقص على مجاله وكان الاقتران هـ (س) = ٩ – س ، الاقتران ك(س) = (ق×هـ)(س) ، ما العباره الصحيحه دائماً؟ ب) ك(س) اقتران مقعر للأعلى في] ١ ،٥ [أ) ك (س) اقتران متزايد في [١ ،٥] د) اقتران مقعر للأسفل في] ١ ،٥ [ج) ك(س) اقتران متناقص في [١ ،٥] ١٣) ليكن ق(س) = m^{7} + أ m^{7} + m m + m ، اذا كان لمنحنى الاقتران ق(س) قيمه صغرى عند m=3 ولم نقطة انعطاف عند س = ١ ما قيمتي أ ، ب على الترتيب ؟ ١٤ - ٣٠ (٤ - ٣٠ (١ - ٣٠ (١ - ١٤ (١ - ١٤ (١ - ١٤ (١ - ١٤) $\{\pi, \frac{\pi}{\pi}\}\ (\neg \{\frac{\pi}{\mu}\}\}) \rightarrow \{\frac{\pi}{\mu}, \frac{\pi}{\mu}\}) \rightarrow \{\frac{\pi}{\mu}\}$ ه ١) يتحرك جسم وفقاً للعلاقه ف(ن) = ٦ن - " - " - " - " - " المسافه بالأمتار ، ن : الزمن بالثواني ، ع(ن) : السرعه،ما التسارع الموجب للجسم عندما تكون سرعته تساوى ٩متر / ثانيه ؟ أ) ٤م/ث^٢ ب) ٨م/ث^٢ ج) ١٢م/ث^٢ د) ٢م/ث^٢ ثلاث نقاط حرجه فقط في $[\ \ \ \ \ \ \ \ \ \]$ وكان ق $^{\prime}(\ \ \ \)$ = $\, \cdot \, \cdot \,$ فما العباره الصحيحه فيما يأتى $\, \cdot \,$

ر ا ق $(\frac{6}{7}) < \cdot$ ر ب) ق $(\frac{7}{7}) = (\frac{7}{7}) = (\frac{7}{7}) < (\frac{7}{7}) < (\frac{7}{7}) < (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7}) > (\frac{7}{7})$ $(\frac{7}{7}) < \frac{7}{7} > (\frac{7}{7}) > (\frac{7}{7})$

الصفحه الثالثه

الصفحة الثالثة الرياضيات الورقة الأولى – رياضيات ثانى عشر / علمى الورقة الأولى – رياضيات ثانى عشر / علمى
$$\begin{bmatrix} x & y & y \\ 0 & y \end{bmatrix} = \begin{bmatrix} x & y & y \\ 0 & y & y \end{bmatrix}$$
 ، ما قيمة / قيم س ؟ $\begin{bmatrix} x & y & y \\ 0 & y & y \end{bmatrix}$

۱۸) اذا کانت
$$w = 2$$
 ، ص $= 2$ ، ما قیمة $| w . m |$ ، ما قیمة $| w . m |$. () .

١٩) اذا كانت أ ، ب مصفوفتين مربعتين من الرتبه الثانيه بحيث ان ٢١ | = ٢٤ ، |أ . ب | = ٣٠ ما قيمة ٣٠ |

وکان
$$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$
 وکان $\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$ ، ما قیمة س ؟

السؤال الثاني: (٢٠ علامه):

(۸ علامات)

مجالات التزايد والتناقص للاقتران ق(س).

٢) القيم القصوى المحليه والمطلقه للاقتران ق(س).

١) ابحث في تحقق شروط نظرية القيم المتوسطه للاقتران ق(س) في [، ، ٢].

٢) جد قيمة / قيم جالتي تحددها النظريه (ان وجدت).

أ) استخدم طریقة کریمر لحل نظام المعادلات ۳س + ۲ص =
$$-3$$
 ، ٥ص + $m =$ " استخدم طریقة کریمر لحل نظام المعادلات ۳س + ۲ص

ب) اذا كانت أ ، ب مصفوفتين مربعتين غير صفريتين ، بحيث أن أب = و ، اثبت أن :

احدى المصفوفتين أ، ب على الأقل ليس لها نظير ضربى . (۳ علامات)

يتبع صفحه (٤) لاحظ الصفح التاليه:

Y.Y. / /

تابع السؤال الثالث:

جـ) اذا كان المستقيم المار بالنقطه (۰، ۲) يمس منحنى العلاقه ٤س 7 + 7 - ا ، جد نقطة / نقط التماس . (۹ علامات)

السؤال الرابع (۲۰ علامه) :

ا اذا كان ق (س) =
$$\frac{w}{w}$$
 ، س \in] - ۱ ، π [، جد ما يلي :

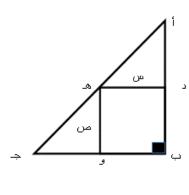
ا فت ات التقع للأعلى و الأسفال امنحنى الاقت ان قراس)

- ١) فترات التقعر للأعلى وللأسفل لمنحنى الاقتران ق(س) .
- ٢) الاحداثيات السينيه لنقطة / نقط الانعطاف وزاوية الانعطاف لمنحنى الاقتران ق(س) (ان وجدت) . (۱۰ علامات)

$$(3 au = 1)$$
 جد نہے $\frac{\pi}{\pi} = \frac{\pi}{\pi} = 1$ (علمات) $\pi = \frac{\pi}{\pi} = 1$

ج) اذا کان ق (س) = س + $\frac{1}{m}$ ، هـ (س) = جتاس ، س \neq ، أثبت أن (ق \circ هـ) $^{\prime}$ (س) = جا 7 س قا 7 س . (٦علامات)

القسم الثاني: يتكون هذا القسم من سؤالين وعلى المشترك أن يجيب عن سؤال واحد فقط


$$\begin{bmatrix} 1 & 1 \\ \gamma & . \end{bmatrix} = \begin{pmatrix} 0 & \gamma \\ \gamma & . \end{bmatrix} = \begin{pmatrix} 0 & \gamma \\ \gamma & . \end{bmatrix}$$

ب) تحرك جسم على خط مستقيم بحيث ان بعده عن نقطه الأصل يتحدد بالعلاقه ف = 7 - 9 1 + 7 حيث ف بعده بالامتار ، ن الزمن بالثواني ، ١) متى يعكس الجسم من اتجاه حركته ؟ ٢) جد أقل تسارع للجسم (٥ علامات)

السؤال السادس: (١٠٠ علامات)

- أ) أب جد مثلث قام الزاويه في ب ، أب = 3 وحدات ، ب جد = 7 وحدات (6 علامات) ، د نقطه على أب ، هـ نقطه على أجـ ، و نقطه على أجـ ، جد قيم س، ص التي يكون عندها مساحة المستطيل دب و هـ أكبر ما يمكن .
- ب) اذا کان نہا $\frac{-1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$ ، جد الثابتین أ ، ب . س → ٠ (٥علامات)

انتهت الاسئله

