بسم الله الرحمن الرحيم

المبحث: الرياضيات

مدة الامتحان: - ساعتان ونصف

مجموع العلامات: - (١٠٠)علامة

اليوم والتاريخ :-الأحد (١١/١/٣١)

المتحان نهاية الفصل الأول ٢٠٢١ الفرع: - الأدبي

دولة فلسطين

وزارة التربية والتعليم محيرية التربية والتعليم/قلقيلية مدارس عنفود

باقة الحطب-كفرقدوم- امانين

ملاحظة : عدد أسئلة الاختبار (ستة) أسئلة ، أجب عن (خمسة) منها فقط.

القسم الأول: يتكون هذا القسم من (أربعة) أسئلة ، وعلى المشترك أن يجيب عنها جميعا

السؤال الأول : (٣٠ علامة)

اختر الإجابة الصحيحة ، ثم ضع إشارة (x) في المكان المخصص في دفتر الإجابة :-

، $\Lambda=\sqrt{m}$ ، وكان $\Lambda=\sqrt{m}$ ، وكان $\Lambda=\sqrt{m}$ ، وكان $\Lambda=\sqrt{m}$ ، وكان $\Lambda=\sqrt{m}$ ، وكانت $M=\sqrt{m}$ ، وكانت $M=\sqrt{m}$

فإن قيمة (ص) تساوي :-

$$-$$
 النا كان $\begin{bmatrix} \omega^{\gamma} & \omega + \psi \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 9 \\ 0 & \omega + \gamma \end{bmatrix}$ ، فإن قيمة المقدار $(\omega - \omega^{\gamma})$ يساوي :-

را) بناوي: - (w) = (w) و کانت (v) = (v) و کانت (v) = (v) و کانت (v) = (v) و کان هر (v) = (v) و کانت (v) = (v)

ع) إذا كانت
$$= \begin{bmatrix} 7 & 3 & 7 \\ 1 & 7 & 7 \end{bmatrix}$$
، $= \begin{bmatrix} 7 & 3 & 7 \\ 1 & 0 & 7 \end{bmatrix}$ ، فإن قيمة المقدار $(1 & 7 \times 7 + 7 + 7 \times 7)$ يساوي :-

ه) إذا كان $\mathfrak{O}(m) = -7 \sqrt{6} + \frac{75}{m}$ ، فإن قيمة $\mathfrak{O}^{-}(7)$ تساوي :-

٦) إذا كان
$$\frac{7}{\pi}$$
 $= \begin{bmatrix} 7 & 7 \\ -7 \end{bmatrix}$ ، فإن قيمة المقدار $(e_{\gamma} - 7)$ يساوي :-

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 2 & \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1$$

۷) إذا كانت المصفوفة \uparrow من الرتبة $(Y \times a)$ والمصفوفة $(Y \times b)$ والمصفوفة $(Y \times b)$ والمصفوفة $(Y \times b)$

وكانت ج= 1 imesب ، فإن قيمة المقدار (Y + 2) يساوي :-

م) إذا كان $v(m) = \sqrt{m} + \sqrt{\frac{m}{\sqrt{m-7}}}$. $\geq m + \int m$. $\geq m + \int m$ أذا كان $v(m) = \sqrt{m} + \sqrt{m} + \sqrt{m}$

$$\frac{1}{\xi}$$
 (2) $\frac{\xi}{\xi}$ (5) $\frac{\xi}{\xi}$ (6)

1)
$$-9$$
 -10 -1

۱۲)عدد القيم القصوى للاقتران $\sigma(m)=m^{-n}-\gamma$ ۲س ، يساوي :-

١٣) احدى المصفوفات التالية لا يوجد لها نظير ضربي :-

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\$$

(٤)0

٤١) بالاعتماد على الجدول المرافق ،

فإن قيمة المقدار $(\Upsilon \mathcal{S} imes \Upsilon st)$ يساوي :

۱۷) اذا كانت س مصفوفة مربعة من الرتبة الثانية وكانت
$$| \Upsilon m | = | \Upsilon m |$$
 ، فإن $| \Upsilon m |$ تساوي :-

۱ (۱) اذا کان للاقتران
$$\mathfrak{T}(m) = (m)^{7} + (M) + (P)$$
 ، قیمة صغری محلیة عند $m = {}^{-7}$ فإن قیمة الثابت (P) یساوي :- (P) یساوی :- (P) ی :- (P) ی :- (P) یساوی :-

اً) صفر ،
7
 ب 7 ب 7 د) صفر ، 9 ب 7 ب 7 د) صفر ، 9 ب 7 ب 7

السؤال الثاني: (٢٠ علامة)

ب) أجد
$$\int_{1}^{\xi} \left(\frac{\xi^{-}}{\sqrt{m}} \right) \frac{\xi^{-}}{\sqrt{m}}$$
 ب) أجد أ

ج) اذا کان
$$v(w) = \frac{a(w)}{o - w^{7}}$$
 $w \neq \pm 0$ ، وکانت ه $v(w) = 1$ ، $v(w) = 1$ ، أوجد $v(w) = 1$. (4 علامات)

السؤال الثالث: (٢٠ علامة)

أ) لديك الاقتران التالي
$$v(w) = \frac{1}{v}w^{-1}w^{-1}w^{-1}$$
 ، أوجد ما يلي :-

-) مجالات التزايد والتناقص للاقتران v(m)
- (w) القيم القصوى المحلية للاقتران (w) وبين نوعها .

$$\gamma_{\times Y} \wedge Y + \begin{bmatrix} \xi & 1 \\ Y^{-} & Y^{-} \end{bmatrix} + \mathcal{W}Y = (\begin{bmatrix} Y & W \\ \xi & 1^{-} \end{bmatrix} + Y) \gamma^{-}$$

ج) اذا کان
$$\int_{1}^{\infty} (7m + 1).2m = \int_{1}^{\infty} -2m$$
 أوجد قيمة ج

السؤال الرابع: (٢٠ علامة)

أ) إذا كان متوسط تغير الاقتران ق (س) في [٥٤٣] يساوي ٧، أوجد متوسط تغير الاقتران

هر(m) = v على الفترة نفسها.

ب) باستخدام قاعدة كريمر حل نظام المعادلات التالية :-
$$\mathbf{v} = \mathbf{v} - \mathbf{v}$$

$$1 - \gamma = \gamma = \gamma$$

$$\begin{vmatrix} \cdot & \xi \\ w & \eta \end{vmatrix} = ^{\gamma} w + \begin{vmatrix} \gamma & \gamma \\ \gamma & \gamma \end{vmatrix} \Upsilon$$

القسم الثاني: يتكون هذا القسم من سؤالين ، وعلى الطالب أن يجيب عن أحدهما فقط

السؤال الخامس: (١٠ علامات)

ب) اذا کان
$$! = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 $= \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

السؤال السادس: (١٠٠ علامات)

ب) اذا کان
$$\mathfrak{O}(w) \times \mathfrak{a}(w) = w$$
 ، حیث $\mathfrak{O}(w)$ ه $\mathfrak{a}(w) \neq \mathfrak{o}$ ،
$$(\mathfrak{o}) \times \mathfrak{a}(w) = w \text{ (a)}$$
 it is alor if $\mathfrak{o}(w) = \frac{1}{7} \mathfrak{a}(w) = \frac{1}{7} \mathfrak{a}(w)$

مع تمنياتنا لكم بالتوفيق والنجاح

محدراء المحدارس

أ . أيمن جمعة

أ . أمال برهم

أ . بلال جمعة

أ . محمد صوان

أ . نفريد جرار

شحبما وسملحه

أ. أحمد رفيق ربع

أ . ايمان شتيوي

أ . معز عباس

أ علاء بطة

أ . ديانا أبو لبدة