

الرياضيات

الفروع: الريادي والفندقي والاقتصاد المنزلي والزراعي الفروع: الرابعة

الطبعة الثالثة ۲۰۲۰ م/ ۱٤٤۱ هـ

جميع حقوق الطبع محفوظة ©

دولة فلسطين فَرَازُوْلَا تَرَيَّتُهُ وَالتَّخِلَائِلُ

 حي الماصيون، شارع المعاهد ص. ب 719 - رام الله - فلسطين pcdc.mohe@gmail.com ☑ | pcdc.edu.ps 🎢

المحتويات

ة خطية بمتغير واحد	٣
رانران.	
هایات	۹
ران متعدد القاعدة	١٣
	١٥
	19
āa	۲۳

يتوقع من الطلبة بعد الإنتهاء من دراسة هذه الوحدة والتفاعل مع أنشطتها أن يكونوا قادرين على توظيف النهايات والاتصال في الحياة العمليّة من خلال الآتي:

- 🕥 حلّ معادلة خطيّة بمتغير واحد
- 🕜 التعرف إلى مفهوم نهاية الاقتران عند نقطة.
- 🕜 إيجاد نهاية الاقتران عند نقطة، باستخدام الجدول والرسم البياني.
 - 🕝 استخدام نهاية اقتران متعدد القاعدة عند نقطة.
 - (عند نقطة.
 - 📵 التعرف إلى الفائدة، وحسابها.

حلّ معادلة خطيّة بمتغر وإحد 1 - 8

Solving a Linear Equation With One Variable

نشاط ١: المسجد الإبراهيميّ من أهم المعالم التَّاريخيَّة والدّينيّة في فلسطين. ارتبطت باسمه إحدى مجازر الاحتلال الصهيوني حيث راح ضحيتها ١٨٠ مُصلياً ما بين شهيد وجريح.

أَجِدُ عدد شهداء وجرحي المجزرة إِذا علمت أَن عدد الجرحي يساوي خمسة أمثال عدد الشهداء. أفرض أن عدد شهداء المجزرة س شهيد.

إذن عدد جرحى المجزرة بدلالة س = ______. عدد شهداءالمجزرة وجرحاها بدلالة س يكون ٦س. لماذا؟ عدد شهداء المجزرة = ______.

عدد جرحي المجزرة = ______

نشاط ٢: يزيد ثمن صندوق عنب قباطية عن ثمن صندوق عنب غزة بمقدار دينارين، وثمن ثلاثة صناديق من عنب غزة يساوي ١٨ ديناراً، أُجِدُ ثمن الصندوق الواحد لكل منها. إذا كان ثمن صندوق عنب غزة = س دينار. أُكمل الجدول الآتي:

الثّمن بالدّينار	الثّمن بدلالة س	
	س	ثمن صندوق عنب غزة
١٨		ثمن ٣ صناديق عنب غزة
		ثمن صندوق عنب قباطية

تعريف: المعادلة الخطيّة بمتغير واحد: هي معادلة يمكن كتابتها على الصورة أس + ب = صفر ، حيث أَن أ ، ب ∈ح ، أ ≠ صفر .

نشاط ٣: أُكملُ الجدول الآتي:

حل المعادلة الخطيّة بمتغير واحد	نوع المعادلة	المعادلة
بإضافة النظير الجمعي للعدد - ١١ لطرفي المعادلة	خطيّة بمتغير واحد	اً) ٧س – ١١ = ٣
بي جود معني عدده من سري مدوده ينتج: ٧س = ١٤		
بنج. ٧ و ١٠٠٠ النظير الضربي للعدد ٧		
ينتج: س = ٢	Cost wat	_
	غير خطيّة. لماذا؟	$= V - \frac{0}{m} $ (\downarrow
		جـ) ٣٣٠ + ٥ = -٤
		$Y^{-} = \xi - \frac{\omega}{\gamma} (2)$
		ه_) س + ٥ ص = ١٠

نشاط ٤: إذا علمتَ أَن قاعدة مبنى المسجد القبلي الواقع جنوبي المسجد الأقصى، مستطيلة الشكل، ويزيد طولها عن عرضها بمقدار ٢٥ متراً، فإذا كان محيطها = ٢٧٠ متراً، فيا بُعْديّ القاعدة؟ أفرض أَن طول القاعدة = س متر .

عرض القاعدة بدلالة س = ______ بها أَن محيط القاعدة = ٢٧٠ متراً.

۲ ((س - ۲۵) + س) = ۲۷، لماذا؟

إذن طول القاعدة: س = ٨٠ متراً. عرض القاعدة:

أفرض أن الزمن اللازم حتى تلتقي السيارتان = ن ساعة. المسافة التي قطعتها السيارة الأُولى بدلالة ن = _____. المسافة التي قطعتها السيارة الثانية بدلالة ن = _____. إذن ٧٠ ن + ٠٨ ن = ٠٥٤. لماذا؟

<u>ن</u> = _____

تلتقي السيارتان في تمام الساعة ______.

بُعْد السيارة عن مكان انطلاقها من مدينة أُمّ الرشراش = ٢١٠ كم. بُعْد السيارة عن مكان انطلاقها من مدينة طبريا = ____.

تمارین ومسائل ٤ - ١:

أُميّز المعادلة الخطية بمتغير واحد مما يأتى:

$$\frac{\omega}{\omega} = \frac{\omega}{\omega - \varphi}$$

س) ۷ (س – ۳) = ۲۸

$$(w + w) - \xi = (w - w)$$

(Limit of a Function) نهاية الاقتران

نشاط (۱)

يستخدم الطلبة عادة الأنابيب المخبرية في تجاربهم العلمية، ولهذه الأنابيب أحجام وأنواع مختلفة، حسب طبيعة الاستخدام، فإذا استخدم إبراهيم أنبوباً مخبرياً سعته ٨ مللتر، وتدرج بوضع سائل فيه مسجلاً حجم السائل والحجم الفارغ في كل لحظة، وكانت القراءات كما في الجدول الآتي:

 ۲,۹	۲,99	۲,999	→	٣	←	٣,٠٠١	٣,٠١	٣,١	 حجم السائل س
 ٥,١	٥,٠١	0,1	→	0	←	٤,٩٩٩	٤,٩٩	٤,٩	 حجم الفراغ ص

وبفرض أن حجم السائل س وحجم الفراغ ص فإن العلاقة بين س ، ص تكون ص $= \Lambda - m$ يقابل π, τ مللتر من حجم السائل π, τ مللتر من الحجم الفارغ.

يقابل ٣,٠٠١ مللتر من حجم السائل مللتر من الحجم الفارغ.

يقابل مللتر من حجم السائل ٥,٠١ مللتر من الحجم الفارغ.

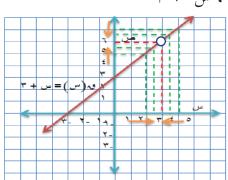
اقتراب حجم الماء (س) من اليمين من العدد ٣ يقابله اقتراب حجم المنطقة الفارغة (ص) من اليمين من العدد ٥.

اقتراب حجم الماء من اليسار من العدد ٣ يقابله اقتراب حجم المنطقة الفارغة من اليسار من العدد

أقارن بين حجم المنطقة الفارغة من اليسار، وحجمها من اليمين عندما يقترب حجم السائل من العدد ٣.

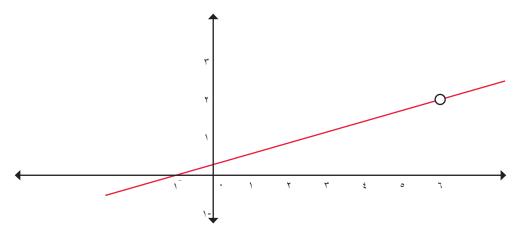
> نشاط (۲)

ليكن $\mathbf{o}(m) = m + 1$ ، $m \in J$ ، فإنه عندما تقترب m من العدد ٤ من اليمين فإن $\mathbf{o}(m)$ يقترب من ٥.


عندما تقترب س من العدد ٤ من اليسار فإن • (س) يقترب

تعریف:

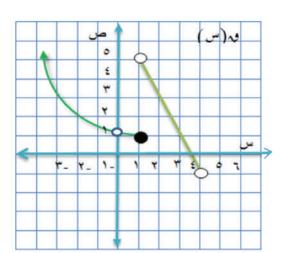
نهاية الاقتران ق(س) عند نقطة:


- كلما اقتربت قيم س من اليمين من العدد (أ) اقتربت قيم \boldsymbol{v} (س) المقابلة لها من عدد حقيقي معین (ل) ویعبر عن ذلك بالصورة $\dot{\gamma}$ ان (س) = ل.
- كلما اقتربت قيم س من اليسار من العدد (أ) اقتربت قيم ن(س) المقابلة لها من عدد حقيقي معین (ل) یعبر عن ذلك بالصورة $\dot{\gamma}$ سان (ل) عبر عن ذلك بالصورة
- إذا كان نها (س) = نها (س) = ل فإن نها (س) موجودة ويكون نها (س) = ل موجودة ويكون نها (س) = ل مرحم أ

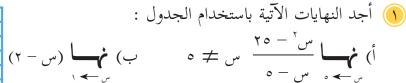
نشاط الشكل المجاور يمثل منحنى الاقتران $\sigma(m) = \frac{m^7 - p}{m}$ ، $m \neq m$

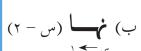
أناقش:

هل توجد علاقة بين وجود النهاية ووجود صورة الاقتران؟


أكمل الجدول الآتي:

	 	0,999	 ٦	 	٦,٠١	٦,١	 w
	 		 	 •••			 ں (س)




$$(1 = (1)U)$$

تمارین ومسائل (۲-۲)

قوانين النهايات (Limits Rules)

قاعدة (٢)

إذا كانت نها
$$\mathbf{U}(m) = \mathbf{U}$$
 ، نهاه $\mathbf{U}(m) = \mathbf{U}$ عدداً حقيقياً فإن:

نشاط (۲)

$$- \frac{1}{2}$$
 إذا كان $\frac{1}{2}$ $\frac{1$

$$1 = r - + \xi = (\omega) + \frac{1}{2} (U(\omega) + \frac{1}{2} \omega(\omega) + \frac{1}{2} \omega(\omega) + \frac{1}{2} \omega(\omega) + \frac{1}{2} \omega(\omega) = \xi + -r = 1$$

$$7. \quad \mathbf{\dot{\gamma}} \qquad \mathbf{\dot{\gamma}}$$

$$= \frac{\mathbf{v} - \mathbf{v}}{\mathbf{v} - \mathbf{v}} = \frac$$

أتذكر:

اقتران كثير الحدود هو اقتران يكون على الصورة:

 $\mathbf{U}(\omega) = \int_{\mathbb{R}^{N}} \omega'' + \int_{\mathbb{R}^{N}} \omega''' + \int_{\mathbb{R}^{N}} \omega''' + \int_{\mathbb{R}^{N}} \omega'' +$

فاعدة (٣)

إذا كان U(m) كثير حدود فإن (m) U(m) = U(1)

مثال (۱): إذا كان
$$\upsilon(m) = \pi m^7 + 7$$
 أجد نها $\upsilon(m)$

بما أن
$$\upsilon(m)$$
 كثير حدود فإن $\int_{\infty} \int_{\infty} \upsilon(m) = \upsilon(r) = 1$ ا $= 1$

أتذكر:

الاقتران النسبي هو اقتران يمكن كتابته على الصورة م
$$(m) = \frac{U(m)}{\omega(m)}$$
 حيث $U(m)$ ، هـ (m) كثيرا حدود، هـ (m) \neq صفر

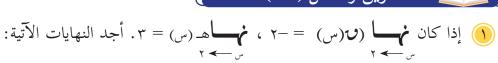
لإيجاد نهاية الاقتران النسبى م(س) ألجأ إلى التعويض المباشر:

۱. إذا كان التعويض المباشر يعطي
$$\frac{acc}{acc}$$
 عدد غير الصفر $\frac{d}{dc}$ ، هراً $\frac{d}{dc}$ ، هراً $\frac{d}{dc}$

i) $\frac{1}{\sqrt{1-\frac{1}{2}}} (U(m)) = \frac{1}{\sqrt{1-\frac{1}{2}}}$, $m \neq 0$ in the proof of the

$$\dots = \frac{\mathsf{Y} \circ - \mathsf{\xi}}{\mathsf{Y} \cdot - \mathsf{\xi}} \quad = \frac{\mathsf{Y} \circ - \mathsf{\xi}}{\mathsf{Y} \bullet - \mathsf{\xi}} = \frac{\mathsf{Y} \circ - \mathsf{\xi}}{\mathsf{Y} \bullet - \mathsf{\xi}}$$

التعويض المباشر يساوي مفر وهي كمية غير معينة، لذا ألجأ للتحليل، ثم الاختصار، ثم التعويض.


$$= \frac{1}{2} \sum_{n=0}^{\infty} \frac{(n+n)}{n}, \quad m \neq 0$$

..... =

 $\frac{\cdot}{-1} = \frac{\xi - \xi}{1 - \xi}$ $= \frac{\xi - \xi}{1 - \xi}$

$$-\frac{3}{2}$$
 وهي صورة غير معينة، $\frac{3}{2}$ $\frac{3}{2}$ $\frac{7}{2}$ $\frac{$

تمارین ومسائل (۲-۲)

$$\hat{I} = \sum_{i=1}^{N} (Y \mathcal{O}^{Y}(w) - a_{-i}(w))$$

 $= \frac{1}{2} \left(\frac{1}{2} \mathcal{O}(m) + m^7 - 7 \right)$

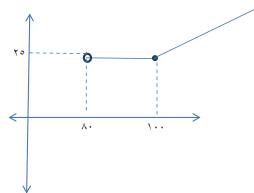
$$\pm \pm \psi$$
 ' $\frac{m^{\gamma}-1}{17-7}$ ' ψ ' $\pm \pm \psi$ '

$$0 \pm \neq 0 \quad (\frac{00}{100^{7}} - \frac{1}{100^{7}}) \quad 0 \pm \pm 0 \quad 0 + 0$$

$$(w)$$
 إذا كان $(w)=\frac{w^{7}-7w}{w^{7}-6w+7}$ ، $w\neq 3$ ، $t=1$. أجد $(w)=\frac{1}{2}$

نهاية الاقتران متعدد القاعدة (Limits of Multibase Function)

نشاط (۱)


يمكن تمثيل العرض بالعلاقة الآتية حيث س تمثل المبلغ المستحق:

قيمة الخصومات لشخص دفع مبلغ ٨٥ ديناراً ، هو ٢٥ ديناراً.

قيمة الخصم لشخص دفع مبلغ ١٢٠ ديناراً، هو

قيمة الخصم لشخص دفع مبلغ ٢٠٠ دينار، هو

هل قيمة الخصم تساوي ٢٥ ديناراً، عندما يقترب مبلغ المستحقات من ١٠٠ دينار.

إذا مثلت علاقة الخصم بالشكل المجاور

$$\mathbf{v}_{\mathbf{w}} = \mathbf{v}_{\mathbf{w}} \mathbf{$$

$$q = (1+\omega + 1) = -1$$

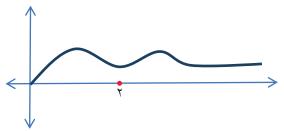
$$\cdots \cdots = (1 + \omega) = \int_{\omega} (\omega) = \int_{\omega} (1 + \omega) = \cdots$$

$$2. \frac{1}{\sqrt{1 + \frac{1}{2}}} \underbrace{0}_{(w)} = \frac$$

إذا كان $\mathfrak{O}(m)$ اقتران متعدد القاعدة و يُغير من قاعدت عند m=1. وكان $\dot{\mathfrak{O}}(m)=\dot{\mathfrak{O}(m)=\dot{\mathfrak{O}}(m)=\dot{\mathfrak{O}}(m)=\dot{\mathfrak{O}}(m)=\dot{\mathfrak{O}}(m)=\dot{\mathfrak{O}}(m)=\dot{\mathfrak{O}(m)=\dot{\mathfrak{O}(m)=0$

تمارین ومسائل (٤-٤)

الاتصال (Continuity)



نشاط (۱)

لدعم صمود أهلنا في مدينة القدس وإنعاش اقتصادهم، قررت مدرسة عسقلان الثانوية للبنات تنظيم رحلة مدرسية إلى مدينة القدس. وأثناء السفر في الحافلة لاحظت سلمي عدّاد السرعة في الحافلة، فكانت السرعة تتغير صعوداً ونزولاً فتارةً تصل السرعة إلى ٩٠ كم/ساعة، وتارةً أخرى تنزل إلى ٥٠ كم/ساعة.

تساءلت سلمى: هل السرعة تنتقل مباشرة من ٥٠ كم/ ساعة إلى ٩٠ كم/ ساعة، أم تنتقل لتمر بالسرعات الواقعة بين ٥٠ و ٩٠؟

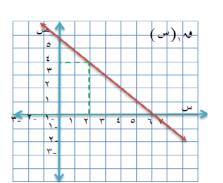
أجابتها معلمة الفيزياء بـِ

إذا كانت الحافلة تسير حسب العلاقة الممثلة بالشكل، هل يمكن تمثيل هذه العلاقة دون رفع القلم؟

مثل هذه العلاقة تكون متصلة؛ لأنها ترسم دون رفع القلم.

$$=(\mathcal{N})\mathcal{U} \qquad =(\mathcal{N})\mathcal{U} \qquad$$

العلاقة بين نهيا $\mathcal{O}(\mathcal{N})$ و $\mathcal{O}(\mathcal{N})$ =


تعريف: الاتصال عند نقطة:

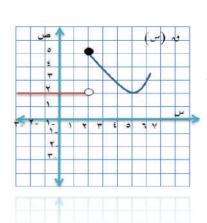
 $\mathbf{v} = \mathbf{v}$ إذا تحققت الشروط الآتية:

ال موجودة ومعرفة كعدد حقيقي.

۲. **نما ن**(س) موجودة.

 $\mathcal{V}. \quad \mathbf{V} = \mathbf{V}(\mathbf{w}) = \mathbf{V}(\mathbf{v}) = \mathbf{V}(\mathbf{v})$

نشاط في الشكل المجاور:
$$(7)$$
 (7)


$$\mathbf{\dot{U}}_{\text{max}} = \mathbf{\dot{U}}_{\text{max}} = \mathbf{\dot{U}}_{\text{max}}$$

$$\mathcal{U}(\gamma) = \int_{\mathcal{U}} \mathcal{U}(\omega) = \xi.$$

ألاحظ أن الشكل يمثل الاقتران كثير الحدود ص= 7 - m وهو متصل دائماً.

قاعدة:

الاقترانات كثيرة الحدود متصلة في مجالها.

نشاط في الشكل المجاور: (٣)

 $U(7) = \dots$ $V(7) = \dots$

لأن

 $\mathfrak{o}(\mathfrak{m})$ متصلاً عند $\mathfrak{o}(\mathfrak{m})$

ابحث اتصال الاقتران $\boldsymbol{\upsilon}(m)$ عند س

الحل:

$$V = (1) \qquad \qquad V =$$

نہاں(س) $\neq 0$ (۱) ومنها 0(س) غیر متصل عند m=1.

أبحث اتصال الاقتران $\boldsymbol{v}(m)$ عند m=m

الحل:

أبحث شروط الاتصال عند س= صفر لأن الاقتران $oldsymbol{v}(m)$ يغير قاعدته عندها.

$$Y - = Y - \cdot = (\cdot)U$$

$$\mathcal{U}(.) = \mathcal{U}(\omega) = -7$$

U(س) متصل عند س = -۲

نشاط إذا كان
$$\mathbf{U}(m) = 7m + 1$$
، هـ $(m) = m^{7}$.

یکون الاقتران
$${\bf v}(m)$$
 متصلاً عند $m=1$ لأنه اقتران کثیر حدود.

$$(0 + 4)$$
 متصل عند س $= 7$ لأن مجموع اقتراني كثيري حدود يساوي اقتران كثير حدود.

$$(0 - a)(m)$$
 متصل عند $m = 7$ لأن

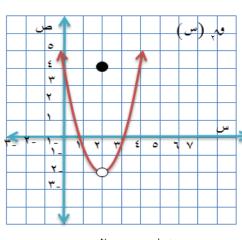
$$(\, oldsymbol{\mathcal{U}} \, imes \, oldsymbol{a}_{-})$$
 الأن متصل عند س $= 7 \, ext{ لأن }$

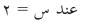
أناقش:

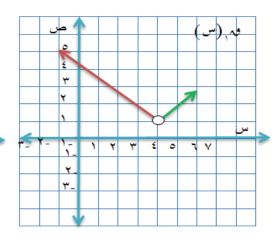
هل
$$\underline{\underline{U}}$$
 متصل عند س = ۲، حیث هـ (س) \pm ، ؟

إذا كان ${\bf v}$ (س)، ${\bf a}$ (س) اقترانين متصلين عند س

رس) یکون متصلاً عند س
$$\theta=0$$
. ۱


۲.
$$(\mathbf{v} \times \mathbf{a})$$
 (س) یکون متصلاً عند س


۳.
$$\frac{\mathbf{U}}{\mathbf{A}}$$
 (س) یکون متصلاً عند س = المحیث هـ (ا) \neq صفر


تمارین ومسائل (٤-٥)

البين سبب عدم اتصال الاقترانات الآتية، عند النقطة المذكورة إزاء كل منها:

أبحث اتصال الاقترانات الآتية، عند قيم س المشار لها في كل حالة:

أ-
$${\bf o}(m) = 7$$
 . عند $m = 1$

$$(m) = \begin{cases} 1 - m & m < 1 \end{cases}$$
 أبحث اتصال الاقتران $m(m) = 1$ عند $m = 1$

الفائدة (Interest)

نشاط نشاط (۱) لحصولها على المركز الأول في مسابقة على مسته ي مدارس فلسطور قروت م حاستول لحصولها على المركز الأول في مسابقة على مستوى مدارس فلسطين. قررت مرح استثمار المبلغ إلى أن تدخل الجامعة، وبذلك تسهم في تأمين دراستها الجامعية.

مبلغ الجائزة؟	لمرح استثمار	كيف يمكن	ع زملائي،	- أناقش مع
---------------	--------------	----------	-----------	------------

- إذا ادخرت مرح مبلغ ١٠٠ دينار في أحد البنوك بفائدة سنوية ٧٪ فإن المبلغ في نهاية السنة الأولى، سيصبح

تعریف:

الفائدة: العائد الذي نحصل عليه نتيجة استثمار مبلغ من المال لفترة زمنية محددة وفقاً لمعدل معين. وهي نوعان: الفائدة البسيطة، والفائدة المركبة.

أولاً: الفائدة البسيطة

قامت شركة فلسطينية للاتصالات باستثمار مبلغ ٨٠٠٠٠٠ دينار في أحد المشاريع لمدة ٣ (٢) سنوات بمعدل فائدة بسيطة ٦٪.

								ء					
دينار.	٤٨	=	٠,٠٦	×	۸	• •	=	الاولى	السنة	في	الفائدة	مبلغ	-

- مبلغ الفائدة في السنة الثانية =
- مبلغ الفائدة في السنة الثالثة =
- إجمالي الفائدة =
 - تسمى الفائدة في هذه الحالة بالفائدة البسيطة.

◄ تعريف:

الفائدة البسيطة: هي فائدة تُحسب على أصل مبلغ الاستثمار. هذه الفائدة تظل ثابتةً طوال مدة الاستثمار، بفرض ثبات قيمة المبلغ المستثمر طوال فترة الاستثمار. ويمكن حسابها باستخدام القاعدة: مبلغ الفائدة البسيطة = مبلغ الاستثمار × معدل الفائدة × المدة الزمنية... (١)

مثال (١):

أودعت وداد مبلغاً من المال في أحد البنوك الفلسطينية، بفائدة سنويّة بسيطة ٥,٥٪ لمدة ١٢ سنة، إذا كان مبلغ الفائدة الذي حصلت عليه وداد في نهاية المدة ١١٨٨٠ ديناراً، أحسب المبلغ المودع؟

الحل:

باستخدام العلاقة (١) يكون مبلغ الفائدة البسيطة = المبلغ الأصلي × نسبة الفائدة × المدة الزمنية.

(بالقسمة على
$$\times$$
 ,٦٦ = المبلغ الأصلي \times ,٦٦ المبلغ الأصلي (بالقسمة على)

١٨٠٠٠ دينار = المبلغ الأصلى (المبلغ المودع).

ثانياً: الفائدة المركبة

الفائدة على المبلغ المودع في كل عام؛ حتى تحصل على ربح أكبر.

- إذا أودعت ١٠٠ دينار بفائدة سنوية ٨٪ ، تحصل على مبلغ فائدة..... في نهاية العام الأول.
 - إذا أبقت رهام مبلغ الفائدة في البنك يصبح المبلغ المودَع
 - في العام الثاني ستتقاضى رهام فائدةً على المبلغ الجديد هي
 - تسمى الفائدة بهذه الطريقة الفائدة المركبة.

◄ تعریف:

الفائدة المركبة: هي فائدة تُحسب على أصل المبلغ، مُضافاً إليه قيمة فائدة الفترة السابقة؛ وبالتالي فإن قيمة الفائدة تتغير في كل فترة من فترات الاستثمار. ويمكن حسابها باستخدام العلاقة:

قامت شركة فلسطينية للاتصالات باستثمار مبلغ ٨٠٠٠٠٠ دينار في أحد المشاريع لمدة ٣سنوات، بمعدل فائدة مركبة ٦٪. أحسب إجمالي الفائدة التي ستحصل عليها الشركة من هذا الاستثمار.

فائدة الاستثمار = مبلغ الاستثمار معدل الفائدة × ١

(ألاحظ أن الفائدة السنوية تعنى أن الفترة الزمنية هي ١)

فائدة الاستثمار للعام الأول ~ 1.0000 \times ~ 1.00000 دينار.

و هي تساوي أيضاً ٨٠٠٠٠٠ [(١ + ٠,٠٦) - ١ (أتحقق)

فائدة الاستثمار للعام الثاني = (۲۰۰۰۰ + ۵۰۰۰۰) × ۲٪ = ۰۸۸۰ ديناراً

و هي تساوي أيضاً ٨٠٠٠٠٠ [(١ + ٢٥,٠٦٠ - ١ (أتحقق)

- فائدة الاستثمار للعام الثالث =

و هي تساوي أيضاً

- إجمالي الفائدة المركبة =

و يمكننا حساب إجمالي الفائدة المركبة خلال فترة الاستثمار باستخدام العلاقة (٢)

 $(1 - (\cdot, \cdot, \cdot, \cdot + 1)) \times \lambda \cdot \cdot \cdot \cdot = 0$ فائدة الاستثمار

فائدة الاستثمار = ١٥٢٨١٢,٨٠ ديناراً.

أناقش:

إذا كنت سأستثمر مبلغاً من المال لفترة زمنية محددة، هل سأستثمره بفائدة بسيطة أم مركبة؟

ملاحظات عند حساب الفائدة البسيطة، أو المركبة:

معدل الفائدة قد يكون سنويًا، أو نصف سنوي، أو ربع سنوي، وقد يكون شهريًا، وقد يكون أقل من ذلك (بالأيام، بالساعات،).

٢. في بعض الحالات، يتم ذكر معدل الفائدة ١٢٪ ولا يتم ذكر هل هذه الفائدة سنوية/ نصف سنوية؟ حينها نعمل على أساس أن المعدل سنويّ.

مثال (٢): قامت جمعية للزيت في فلسطين باستثمار مبلغ (٥٠٠٠٠٠) دينار لمدة ٣ شهور، بمعدل سنويّ بسيط ٨٪. فما الفائدة التي تحصل عليها الجمعية؟

الحل:

الفائدة $= \dots \times / \times (\pi \div 1)$ تحويل فترة الاستثمار إلى سنوات $) = \dots \times / \times (\pi \div 1)$ دينار.

تمارین و مسائل (۲-۶)

- ① قامت جمعية الأسرة السعيدة باستثمار مبلغ ٤٠٠٠٠ دينار لمدة عامين، بمعدل نصف سنوي بسيط ٤٪. فما الفائدة التي تحصل عليها هذه الجمعية؟
- ﴿ إِذَا كَانَتَ الفَائِدَةُ التِي رَبِحَتَهَا شَرِكَةً للمُوادُ الغَذَائِيةَ في مَدَيْنَةُ الخليل ٢٥٠٠٠ دينار في ٢سنوات، بمعدل فائدة بسيطة ٥٪، فما مبلغ الاستثمار؟
- (٣) أقارن بين الفائدة البسيطة والفائدة المركبة، التي يحصل عليها شخص استثمر ١٠٠٠٠ دولار لمدة ٤ سنوات، بمعدل فائدة ٨٪.

٤-٧ تمارين عامة

أختار رمز الإجابة الصحية فيما يأتي:
 ١) ما قيمة نميل (س + ٢ س + ٢)?

7) إذا كان نها
$$U(m) = 7$$
 ، نها هـ (س) $= 7$. ما قيمة نها $U(m) + i$ هـ (س)? $w \rightarrow 0$ $w \rightarrow 0$

٣) إذا أستثمر مبلغ قدره ٨٢٠ دينار بمعدل فائدة سنوية ٥٪ ، فإن الفائدة البسيطة بعد ٦ سنوات تساوي أ) ۲٤٢

ر)
$$\frac{1}{2}$$
 (عیر موجودة $\frac{1}{2}$ (عیر مو

٦) أودعت رماح مبلغ ١٠٠٠٠ دينار في بنك بفائدة بسيطة ٨٪. ما جملة ما ستقبضه رماح

٢) أجد النهايات الآتية:

$$(\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2})$$

السؤال الأول: اختر الإجابة الصحيحة من البدائل المدرجة:

$$-$$
 افا کانت نہا σ (س) = $-$ ، فإن نہا σ (س) $-$ س + σ ا

$$2 - |\mathcal{E}| \geq 0 \quad \text{if } |\mathcal{E}| = 0 \quad \text{if }$$

$$\cdots = (m + m) - o$$

$$\frac{1}{m} (x)$$

$$\Rightarrow ($$

$$\cdots = \frac{\xi + \omega \Upsilon}{7 - \omega - \Upsilon} - \Upsilon$$

ر)
$$\frac{\gamma}{\delta}$$
 - (ج $\frac{\gamma}{\delta}$ (عفر $\frac{\gamma}{\delta}$) $\frac{\gamma}{\delta}$ (عفر

$$\cdots = \frac{m - m}{17 - m + 7m} - \Lambda$$

$$\dots = \frac{1 - r_{\omega}}{1 - \omega} - q$$

$$(2) \quad (3) \quad (4) \quad (4) \quad (5) \quad (7) \quad (7)$$

 $\cdots = \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$ $= \frac{r_{m'}^{2} + \lambda r_{m'}^{2}}{r_{m'}^{2} - r_{m'}^{2}} - \cdots$

١٢- الفائدة = مبلغ الاستثمار × معدل الفائدة × المدة الزمنية:

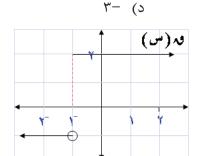
أ) المركّبة. ب) السوقية. ج) البسيطة. د) الفعلية.

۱۳۰ أُودِع ۱۰۰۰ دينار ؛ بمعدل فائدة سنوية ۱۰٪ ، فإن قيمة ما سيقبض نهاية العام = أ) ٥٠ ديناراً. بمعدل فائدة سنوية ٢٠٪ ، فإن قيمة ما سيقبض نهاية العام =

١٤- أودع ساهر ١٥٠٠ دينار في حساب توفير بمعدل فائدة مركبة ٧ ٪ سنوياً ولمدة ٣ سنوات ، فإن قيمة الفوائد
 التي يحصل عليها =

اً) ۳۰۰ دینار. ب) ۳۱۰ دیناراً. ج) ۳۴۰ دیناراً. دیناراً.

- السؤال الثاني: يريد شخص اقتراض ٢٠٠٠ دينار، على أن يسدد القرض على دفعات شهرية متساوية خلال عام من تاريخ الاقتراض، فإذا كان البنك يتقاضى فائدة مركبة ٨٪ سنوياً. فما قيمة الدفعة الشهرية؟
- السؤال الثالث: يوفر عماد ٨٠٠ دينار نهاية كل سنة ويضعها في بنك بالفائدة المركبة ٣٪ سنوياً لمدة ٤ سنوات. ما القيمة المستقبلية لتوفيراته (جملة ما وفره خلال المدة)؟
- السؤال الرابع: يوفر ماجد ١٥٠ ديناراً نهاية كل سنة، ويضعها في بنك بالفائدة المركبة ٨٪ في السنة، ويضاف بشكل سنوي لمدة ٥ سنوات. ما القيمة المستقبلية لتوفيراته (جملة ما وفره خلال المدة)؟
- السؤال الخامس: يريد حمودة اقتراض مبلغ ٤٠٠٠ دينار، على أن يسدد القرض على دفعات شهرية متساوية خلال سنة من تاريخ الاقتراض، فإذا كان البنك يتقاضى فائدة مركبة ٨٪ في السنة. ما قيمة الدفعة الشهرية؟
 - السؤال السادس: أودعت سناء مبلغ ٥٠٠٠ دينار، بحساب الربح المركب بفائدة ٦٪ في السنة، أوجد كلاً من: أ) مقدار الربح بعد سنتين. ب) جملة المبلغ بعد سنتين.
 - السؤال السابع: احسب قيمة النهايات الآتية (إن أمكن):


 $\frac{1 - m^{2}}{70 - 7} = \frac{1}{m^{2} - 1}$ $\frac{1}{10 + 1} = \frac{1}{10 + 1}$ $\frac{1}{10 + 1} = \frac{1}{10 + 1}$ $\frac{1}{10 + 1} = \frac{1}{10 + 1}$

إختبار ذاتي- الفترة الرابعة

السؤال الأول: اختر الإجابة الصحيحة من البدائل المدرجة:

= المعادلة π س = ۱ فإن قيمة س

٢) من الشكل المجاور، ما قيمة نمان(س) ؟

د. غير موجودة

ج) ٣

ج. ٤

ج. ٣

أ. ٢

أ. صفر ب. ٢

٤) استثمر خليل مبلغ ٥٠٠٠٠٠ دينار في شركة يافا للمجوهرات لمدة ٣ شهور بمعدل سنوي بسيط ٨٪، فما قيمة الفائدة البسيطة التي سيحصل عليها؟

أ. ١٠٠٠ ج. ١٠٠٠٠

ه) أحد الاقترانات الآتية متصل عند س = صفر ، هو

$$\frac{1}{(m-1)^{\frac{1}{2}}} (2) \qquad \frac{m+1}{2m-2} (2) \qquad \frac{$$

(7) اِذَا كَانَ (3) متصلاً على ح، (3) (3) (3) (3) (4) اِذَا كَانَ (3) متصلاً على ح، (3)

 $\frac{17}{\pi}$ (2 \Rightarrow \Rightarrow (5)

٧) أُودِع مبلغ مدة ٤ سنوات بفائدة ٥ ٪ سنوياً ، فحقّق ٤٠٠ دينار ربحاً ، فإنّ مبلغ الاستثمار =

أ) ١٨٥٦ دينار. ب) ١٨٠٠ دينار. ج) ٢٠٠٠ دينار.

٨) أودع شخص مبلغاً وقدره ٢٠٠٠ دينار، بمعدل فائدة بسيطة قدرها ٧٪ ، فحقق ربحاً قيمته ٢١٠٠ دينار، فإنّ
 عدد السنوات اللازمة لهذا الربح تساوي:

أ) γ سنوات. γ سنوات. γ سنوات. γ سنوات.

٩) من مخاطر الاستثمار على الاقتصاد:

أ) المخاطر المالية. ب) المخاطر النفسية. ج) المخاطر الاجتماعية د) كل ما سبق.

السؤال الثاني: احسب قيمة النهايات الآتية:

$$\frac{2+m}{m-1} \stackrel{\leftarrow}{\longleftarrow} (-)$$

$$(m^{7}+m^{2},m^{2}+m^{2})$$
 عند $(m)=\{0,1,\dots,m\}$ عند $(m)=\{0,1,\dots,m\}$ عند $(m)=\{0,1,\dots,m\}$

- السؤال الرابع: يودِعُ خالد مبلغ ١٠٠٠ دينار نهاية كل عام في حساب التوفير في أحد البنوك الفلسطينية، بفائدة
 ٥٪. كم تبلغ جملة توفيراته في نهاية السنة العاشرة؟
- السؤال الخامس: أرادت سوسن أن تستثمر حصتها من تركة والدها والبالغة ١٠٠٠٠ دينار، لمدة خمس سنوات بمعدل فائدة ١٠٠٠. قارن بين الاستثمار بفائدة بسيطة أو مركّبة.
 - السؤال السادس: إذا كانت نهيا v(m) = 0 ، نهيا عهر v(m) = 11 ، احسب قيمة كل من:

$$(0) \quad (0) \quad (0)$$

------» انتهت الأسئلة «------

جدول الأرقام العشوائية

														
Col. Line	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
1	10460	15011	01536	02011	81647	91646	691 79	14194	62590	36207	20969	99570	91291	90700
2	22368	46573	255 95	85393	30995	891 98	27982	53402	93965	34095	52666	19174	39615	99505
3	241 30	48360	22527	97265	76393	64809	15179	24830	49340	32081	30680	19655	63348	58629
4	421 67	93093	06243	61680	07856	16376	39440	53537	71341	57004	00849	74917	97758	16379
5	37570	39975	81837	16656	061 21	91782	60468	81305	49684	60672	14110	06927	01263	54613
6	77921	06907	11008	42751	27756	53498	18602	70659	90655	15053	21916	81825	44394	42880
7	99562	72905	56420	69994	98872	31016	711 94	18738	44013	48840	63213	21069	10634	12952
8	96301	91977	05463	07972	18876	20922	94595	56869	69014	60045	18425	84903	42508	32307
9	89579	14342	63661	10281	17453	181 03	57740	84378	25331	12566	58678	44947	05585	56941
10	85475	36857	53342	53988	53060	59533	38867	62300	081 58	17983	16439	11458	18593	64952
11	28918	69578	88231	33276	70997	79936	56865	05859	901 06	31595	01547	85590	91610	781 88
12	63553	40961	48235	03427	49626	69445	18663	72695	521 80	20847	12234	90511	33703	90322
13	09429	93969	52636	92737	88974	33488	36320	17617	30015	08272	8411	271 56	30613	74952
14	10365	611 29	87529	85689	48237	52267	67689	93394	01511	26358	851 04	20285	29975	89868
15	07119	97336	71048	081 78	77233	13916	47564	81056	97735	85677	29372	74461	28551	90707
16	51085	12765	51821	51259	77452	16308	60756	921 44	49442	53900	70960	63990	75601	40719
17	02368	21382	62404	60268	89368	19885	55322	44819	01188	65255	64835	44919	05944	551 57
18	01011	54092	33362	94904	31273	041 46	18594	29852	71585	85030	51132	01915	92747	64951
19	521 62	53916	46369	58586	23216	14513	831 49	98736	23495	64350	94738	17752	351 56	35749
20	07056	97628	33787	09998	42698	06691	76988	13602	51851	461 04	88916	19509	25625	581 04
21	48663	91245	85826	14346	091 72	301 68	90229	04734	591 93	221 78	30421	61666	99904	32812
22	541 64	58492	00421	741 03	47070	25306	76468	26384	581 51	06646	21524	15227	96909	44592
23	32639	32363	05597	24200	13363	38005	94342	28728	35806	06912	17012	641 61	18296	22851
24	29334	27001	87637	87308	58731	00256	45834	15398	46557	411 35	10367	07684	361 88	18510
25	02488	33062	28834	07351	19731	92420	60952	61280	50001	67658	32586	86679	50720	94953
26	81525	72295	04839	96423	24878	82651	66566	14778	76797	14780	13300	87074	79666	95725
27	29676	20591	68086	26432	46901	20849	89768	81536	86645	12659	92259	571 02	80428	25280
28	00742	57392	39064	66432	84673	40027	32832	61362	98947	96067	64760	64584	96096	98253
29	05366	04213	25669	26422	44407	44048	37937	63904	45766	661 34	75470	66520	34693	90449
30	91921	26418	64117	94305	26776	25940	39972	22209	71500	64568	91402	42416	07844	69618
31	00582	04711	87917	77341	42206	351 26	74087	99547	81817	42607	43808	76655	62028	76630
32	00725	69884	62797	561 70	86324	88072	76222	36086	84637	931 61	76038	65855	77919	88006
33	69011	65795	95876	55293	18988	27354	26575	08625	40801	59920	29841	801 50	12777	48501
34	25976	57948	29888	88604	67917	48708	18912	82271	65424	69774	33611	54262	85963	03547
35	09763	83473	73577	12908	30883	18317	28290	35797	05998	41688	34952	37888	38917	88050
36	91567	42595	27958	301 34	04024	86385	29880	99730	00036	84855	29080	09250	79656	73211
37	17955	56349	90999	491 27	20044	59931	06115	20542	18059	02008	73708	83517	361 03	42791
38	46503	18584	18845	49618	02304	51038	20655	58727	281 68	15475	56942		20562	87338
39	921 57	89634	94824	781 71	84610	82834	09922	25417	441 37	48413	25555	21246	35509	20468
40	14577	62765	35605	81263	39667	47358	56873	56307	61607	45918	89686	201 03	77490	18062
41	98427	07523	00062	64270	01638	92477	66969	98420	04880	45585	46565	041 02	46880	45709
42	34914	63976	88720	82765	34476	17032	87589	40836	32427	70002	70663	88863	77775	69348
43	70060	28277	39475	46473	23219	53416	94970	25832	69975	94884	19661	72828	001 02	66794
44	53976	54914	06990	67245	68350	82948	11398	42878	80287	88267	47363	46634	06541	97809
45	76072	29515	40980	07391	58745	25774	00987	80059	39911	961 89	41151	14222	60697	59583
46	90725	52210	83974	29992	65831	38857	50490	83765	55657	14361	31720	57375	56228	41546
47	64364	67412	33339	31926	14883	24413	59744	92351	97473	89286	35931	04110	23726	51900
48	08962	00358	31662	25388	61642	34072	81249	35648	56891	69352	48373	45578	78547	81788
49	95012	68379	93526	70765	10592	04542	76463	54328	02349	17247	28865	14777	62730	92277
50	15664	10493	20492	38391	91132	21999	59516	81652	271 95	48223	46751	22923	32261	85653