State Of Palestine

Ministry of Education

D. G. of Assessment, Evaluation & Examinations

بسدالله الرحمن الرحيد

دولة فلسطين وزارة التربية والتعليم الإدارة العامة للقياس والتقويم والامتحانات

الفرع: العلمي

المبحث: الرياضيات

الورقة: ---

الجلسة: ---

اليوم: التاريخ: /٢٠٢١/١٢م مدة الامتحان: ثلاث ساعات مجموع العلامات: (٢٠٠) علامة منحان شهادة الدراسة الثانوية العام^ن لعام 2021م - الدورة الاستكمالية

ملاحظة: عدد أسئلة الورقة (ثمانية) أسئلة، أجب عن (خمسة) منها فقط

القسم الأول: يتكون هذا القسم من (ستة) أسئلة، وعلى المشترك أن يجيب (أربعة) منها، على أن يكون السؤال الأول (الموضوعي) منها إجباريا.

السؤال الأول: (١٠ علامة)

يتكون هذا السؤال من (١٠) فقرات من نوع اختيار من متعدد، من أربعة بدائل، اختر رمز الإجابة الصحيحة، ثم ضع إشارة (×) في المكان المخصص في دفتر الإجابة:

() al
$$\frac{1}{\omega}$$
 $\frac{1}{\omega}$ $\frac{1}{\omega}$?

اً)
$$\frac{1}{7}$$
 ب $\frac{1}{7}$ د) غير موجودة

$$\frac{\circ}{\sqrt{7}} \left(7\right) \qquad \frac{\circ}{\sqrt{7}} \left(2\right) \qquad \frac{\circ}{\sqrt{7}}$$

٣) إذا كان
$$\mathfrak{O}(m) = (1 - 1) m^{-1} + 1$$
س، فما قيمة أ التي تجعل المماس لمنحنى $\mathfrak{O}(m)$ عندما $m = 1$ أفقيا؟

$$^{+}$$
 إذا كان $^{-}$

ج)
$$v(m)$$
 مقعر للأسفل على $v(m)$ د) النقطة $v(m)$ نقطة انعطاف لمنحنى الاقتران $v(m)$

ه) إذا كان
$$\mathfrak{O}(m) = \sqrt{3m + m}$$
 فإن قيمة / قيم س التي يكون عندها للاقتران $\mathfrak{O}(m)$ نقطاً حرجة هي:
أ) $-7 - 3$ $-7 - 3$ $-7 - 3$ $-7 - 3$

$$\{ \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{5$$

 \wedge اذا کان arphi(m)= au ، arphi(m)= au فما قیمه $\int (arphi(m) imes arphi) au$ \wedge

) اذا کانت $\sigma_{_{\circ}}$ تجزئة منتظمة للفترة [7:7]وکانت $\dfrac{\dot{\gamma}}{\omega}$ (0:10) اذا کانت $\sigma_{_{\circ}}$ نفما قیمة (3:10)

۱۰) ما ناتج آجيا^۲س ؟

السؤال الثاني: (٤٠ علامة)

أ) ۱. إذا كان $(1- جتاس)^{7} = 0 ص - جا^{7} س، فما قيمة <math>\frac{2 \, \omega}{2 \, w}$ ؟

٢. إذا كان $w(m)=m^{-n}-m$ معرفاً في الفترة $w(m)=m^{-n}-m$ ، فما القيمة الصغرى المطلقة للاقتران w(m)?

ب) ۱. إذا كان
$$q^{-l} = \begin{bmatrix} 7 & 7 \\ 1 & 1 \end{bmatrix}$$
 ، $v = \begin{bmatrix} -3 & -6 \\ 1 & 1 \end{bmatrix}$ فجد $q + 7$ ب $q - 7$ فجد $q - 7$ فجد $q - 7$ ب $q - 7$ فجد $q - 7$ ب $q - 7$ ب $q - 7$ فجد $q - 7$ ب $q - 7$ ب

۱
$$\wedge$$
 اثبت أن \wedge \leq $\int\limits_{-\infty}^{\gamma} \sqrt{\rho} - \omega^{\gamma}$ ع $\omega \leq \Lambda$ اثبت أن \wedge

السؤال الثالث: (١٠ علامة)

۲. إذا كان $\mathfrak{V}(m) = (m^{-1} - m)$ ه m ، m ، m ، فأوجد مجالات التزايد والتناقص للاقتران $\mathfrak{V}(m)$.

$$(2.5]$$
 ب) ۱. إذا كان $(2.5]$ $(3.5]$ $(3.5]$ ب $(3.5]$

۲. إذا كان
$$q = \begin{bmatrix} \ddots & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
، $v = \begin{bmatrix} 7 & 1 & 1 \\ 0 & 7 & 1 \end{bmatrix}$ ، جد المصفوفة س بحيث $Y + \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = 0$. $Y + \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

السؤال الرابع: (١٠ علامة)

ر ۲۰ علامة) $(m)=m^{7}+7$ $m^{7}-2$ س $m\in [-2,2]$ ، فأوجد :

١. القيم القصوى المحلية والمطلقة للاقتران ت (س).

۲. مجالات التقعر للأعلى وللأسفل لمنحنى الاقتران O(m).

ب) ۱. جد
$$\int_{-\infty}^{\infty} \frac{1-e^{\omega}}{\omega} z^{\omega}$$
 .

٢. عند حل نظام من المعادلات الخطية بمتغيرين س ، ص بطريقة كريمر وجد أن:

الورقة: ---

السؤال الخامس: (٤٠ علامة)

ر ما
$$=$$
 $=$ $\{ m = 7 \ , \leq m \leq 7 \}$ ، قابلا للاشتقاق عند $\{ m = 7 \ , \leq m \leq 7 \}$ ، قابلا للاشتقاق عند $\{ m = 7 \ , \leq m \leq 7 \}$ ، قابلا للاشتقاق عند $\{ m = 7 \ , \leq m \leq 7 \}$

الفرع: العلمى

۱. ما قیم الثابتین أ ، ب ؟ بدا كان ه
$$(m) = \frac{7}{0-m}$$
 ، فما قیمة $(0 \circ a)^{(1)}$ ؟ ب . إذا كان ه $(m) = \frac{7}{0-m}$

ب) ١. ما مساحة المنطقة المحصورة بين منحنيي الاقترانين
$$^{\circ}(w) = w + 7$$
 هـ $^{\circ}(w) = w + 7$ $^{\circ}(w) = w + 7$

۲. إذا كانت
$$\sigma$$
 رتجزئة منتظمة للفترة $[\Lambda \circ]$ بحيث $M_{\chi} - M_{\chi-1} = rac{1}{2}$ لجميع قيم Λ الممكنة،

. σ عدد عناصر التجزئة σ علما بأن العنصر الخامس فيها يساوي (۲۰ علامة)

السؤال السادس: (٤٠ علامة)

أ) ١. إذا كان المستقيم m=1-1 س يمس منحنى الاقتران m(m)=1 + + + - + - - - - القطة انعطاف v(m) وهي (13-1) ، فما قيم الثوابت 13+3+3(۲۰ علامة)

ب) ۱. إذا كان
$$\int\limits_{\gamma}^{\gamma} |\gamma w - \gamma| \ge m = \Lambda$$
، حيث $\gamma < \gamma$ فما قيمة الثابت $\gamma < \gamma$

القسم الثاني: يتكون هذا القسم من سؤالين وعلى المشترك أن يجيب عن أحدهما فقط.

السؤال السابع: (٠٠ علامة)

أ) ۱. إذا كان $\mathfrak{O}(m)$ ه(m) اقترانين قابلين للاشتقاق على ح، وكان ك $(m)=\mathfrak{O}^{7}(m)+\mathfrak{a}^{7}(m)+m^{7}+m$ (w) = - v أثبت أن الاقتران ك(w) = - v متزايد في ح علما بأن v'(w) = - v

٢. إذا كانت معادلة المماس لمنحنى الاقتران v(m) عند v=7 هي v=7، ومعادلة العمودي على المماس لمنحنى الاقتران ه(w) عند w=7 هي w=7 هي w=7 ه فما قيمة $(a\circ b)^*(7)^*(7)^*(7)^*$ علامة)

ب) ۱. جد [جا /اس + ۲ حس . (۲۰ علامة)

۲. اذا کانت
$$= \begin{bmatrix} 1 & 0 & \xi \\ 0 & \xi \end{bmatrix}$$
 ، $= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \xi \end{bmatrix}$ ، فما قیم س ، ص ؟

لعام ۲۰۲۱

الورقة: ---

السؤال الثامن: (٤٠ علامة)

٢. إذا كانت العلاقة $\frac{1}{7} + \frac{9}{6} + \frac{9}{6} = 7$ تربط إزاحة الجسم (بالأمتار) مع سرعته (بالمتر/ دقيقة)، فما تسارع الجسم عندما يكون قد قطع ٣ أمتار.

ب) ۱. ما قیمة
$$\int 3 \left(\sqrt[M]{w} + 7 \sqrt[M]{w} \right)$$
ه $(-7 - 3 \sqrt{w})^{2} + 7 \sqrt[M]{w}$

.
$$\gamma \left(s + \beta \right) = \frac{1-\omega}{s}$$
 بحیث $|\omega| = |\omega|$ ، أثبت أن $\omega + \omega^{-1} = \frac{1}{s}$. $\gamma \left(s + \beta \right) = \frac{1}{s}$. $\gamma \left(s + \beta \right) = \frac{1}{s}$

الفرع: العلمى

انتهت الأسئلة