State of Palestine

Ministry of Education

D.G.of Assessment, Evaluation & Examination

الدورة : الأولى

التاريخ: يونيو 2024

مدة الامتحان: ساعتان ونصف الساعة

مجموع العلامات: (۱۰۰)علامة

 دولة فلسطين وزارة التربية والتعليم

الإدارة العامة للقياس والتقويم والامتحانات

الفرعان : الأدبي والشرعي

المبحث: الرياضيات

إعداد المعلم: سائد الحلاق

ملاحظة : عدد أسئلة الورقة " ستة " أسئلة ، أجب عن (خمسة) أسئلة منها فقط

القسم الأول: يتكون هذا القسم من ثلاثة أسئلة وعلى المشترك أن يجيب عنها جميعا

يتكون هذا السؤال من (١٠) فقرات من نوع اختيار من متعدد ، من أربعة بدائل ، اختر الإجابة الصحيحة ،ثم انقلها للمستطيل المخصص:

۱) إذا كان متوسط تغير هـ (س) في الفترة [13ب] يساوي كم وكان هـ (1) هـ (+) هـ الفترة [13+] با إذا كان متوسط تغير هـ [-1]

Υ- Υ ξ-

 Υ) إذا كان $\Im(m)=m^{\gamma}+o$ ، ه $\Im(m)=-3$ به $\Im(m)=0$ ، فما قيمة الثابت ج $\Im(m)=0$

o — 0 3 / miles / Y ·

 (\circ) إذا كان للاقتران (\circ) قيمة قصوى محلية عند النقطة (\circ) ، فما قيمة (\circ) (\circ) (\circ) (\circ) (\circ)

٧٤ صفر ٧٤٩

 $Y-= \int_{\mathbb{R}^n} (w) \cdot S(w) = \int_{\mathbb{R}^n} (w) \cdot S(w) \cdot S(w) = -Y$ إذا كان w=-Y عندما w=-Y?

)— (>

Υ— Υ ٦ ٦—

 $- \circ | \cdot |_{e_{\tau}}$

$$^{\circ}$$
 اذا کانت: $^{\circ}$ التالية تمثل $^{\circ}$ ، فأي من المصفوفات التالية تمثل $^{\circ}$ ، اذا کانت: $^{\circ}$ التالية تمثل $^{\circ}$ ، فأي من المصفوفات التالية تمثل $^{\circ}$ ،

$$\begin{bmatrix} \xi - & \gamma \\ 1 \cdot & 3 - \end{bmatrix} \qquad \begin{bmatrix} \xi - & \gamma - \\ 1 \cdot - & 3 - \end{bmatrix} \qquad \begin{bmatrix} \gamma & \gamma - \\ 1 \cdot - & \xi \end{bmatrix}$$

۹) إذا كانت:
$$\Upsilon$$
 لـو $(1) = 1$ ، لـو $(1) = 1$ ، فما قيمة لـو $(1) = 1$ ؛

• ١) إذا كان مجموع علامات ست طالبات يساوي • ٤ ٥ ، والانحراف المعياري للعلامات يساوي ٣ ، فما العلامة التي لا تنحرف

0 & .

السؤال الثاني / (٢٠ علامة)

أ) إذا كان الاقتران
$$0$$
 $(m) = m (m^{7} - 11)$ ، $m \in 3$ ، جد:

- (۱) فترات التزاید والتناقص للاقتران (m) علی مجاله.
 - ۲) القيم القصوى للاقتران $\mathfrak{o}(m)$ ، وأحدد نوعها.
- $+ \mathcal{V} + \mathcal{V} + \mathcal{V}$ استخدم قاعدة كريمر لحل نظام المعادلات الآتى : $\mathcal{V} + \mathcal{V} + \mathcal{V} + \mathcal{V}$
 - ج) حل كلاً من المعادلتين التاليتين:

(1)
$$L_{q_{\gamma}}(m+1) - L_{q_{\gamma}}(m-1) = L_{q_{\gamma}}(p_{\gamma})$$

$$\overline{\gamma \circ \gamma} = \sqrt{\frac{1}{\xi}} \times \sqrt{\gamma - 1} (7\xi) (7\xi)$$

السؤال الثالث / (٢٠ علامة)

- أ) إذا كان متوسط تغير الاقتران فه (س) في الفترة [٢ ، ٢] يساوي ٥ وكان الاقتران هـ (س) = ٢ فه (س) + س ن ، جد متوسط تغير للاقتران هـ (س) لنفس الفترة .
 - (23) ج (23) ج (23) ج (23) تمثل حدود متسلسلة حسابية (23)

٣) مجموع حدود المتسلسلة

٢) أساس المتسلسلة

١) قيمة الثابت ج

ج) إذا كان $\mathfrak{o}_{\lambda}(m) = \lambda$ $\sqrt{m} - \mathfrak{a}_{\lambda}(m) \times m$ ، وكان $\gamma_{\lambda}(k) = k$ ، $\mathfrak{o}_{\lambda}(k) = k$ ، فما قيمة $\mathfrak{o}_{\lambda}(k)$?

القسم الثاني : يتكون هذا القسم من ثلاثة أسئلة وعلى المشترك أن يجيب عن (سؤالين) منهما فقط

السؤال الرابع / (٢٠ علامة)

أ) كم حداً يلزم أخذه من متسلسلة هندسية حدها الأول ٢ وأساسها ٢ ليكون مجموعها يساوي $(V + \sum_{i=1}^{n} (V^i))$ ؟

ب) إذا كان
$$\int_{\gamma}^{\gamma} \mathbb{T}^{2} \mathbb{T}^{$$

ج) حل المعادلة المصفوفية التالية:

$$\left(\begin{array}{ccc} \omega + \begin{bmatrix} 1 & \cdot & \cdot \\ 1 & 0 \end{bmatrix} \right) \begin{vmatrix} 1 & \cdot & 1 \\ w & 1 \end{vmatrix} = \omega \xi + \zeta \begin{vmatrix} 1 & w \\ 1 & \xi \end{vmatrix}$$

السؤال الخامس / (٢٠ علامة)

أ) إذا كانت العلامات المعيارية للطالبات: أسيل وسلمى وسجى هي: - ٢، ٤، ٢ على الترتيب، وكان الوسط الحسابي

للعلامات ٧٠ والانحراف المعياري σ ، والفرق بين علامتي سلمي وسجى - ، فما العلامات الفعلية للطالبات ؟

$$-\infty$$
 (۱ : ۱) $\int_{\gamma}^{\xi} \left(1 + \frac{1}{\sqrt{|\omega|}} + \frac{1}{\gamma} + \frac{1}{\sqrt{|\omega|}} \right) \int_{\gamma}^{\xi} \left(1 : 1 + \frac{1}{\gamma} + \frac{1}{\gamma} + \frac{1}{\gamma} \right) dx$

$$: + \cdot \begin{bmatrix} 1 - & 1 \\ & & \\ & & 1 - \end{bmatrix} = 0$$
 ، $\begin{bmatrix} 1 & 7 \\ & & \\ & & - \end{bmatrix} = 0$ ، جد $= \begin{bmatrix} 1 & 7 \\ & & \\ & & \end{bmatrix}$

$$\left| \begin{array}{ccc} \Upsilon & W & W & W \end{array} \right| \left(\begin{array}{ccc} \Upsilon & W & W & W \end{array} \right) = \left(\begin{array}{ccc} \Upsilon & W & W & W \end{array} \right)$$

السؤال السادس / (٢٠ علامة)

جد:

أ) إذا كان
$$0 < (m) = \frac{\gamma - \gamma - \gamma}{1 - \gamma m} - \gamma$$
ه (m) وكان : $0 < (m) = \gamma$ ، $\gamma < \gamma = \gamma$ ، فما قيمة الثابت ب ؟

ب) إذا كانت علامات ١٠٠٠ طالب في اختبار ما تتبع التوزيع الطبيعي المعياري بوسط حسابي ٦٠ وانحراف معياري ١٠

۲	١	١	ع
٠,٩٧٧٢	٠,٨٤١٣	٠,١٥٨٧	المساحة تحت ع

- ١) عدد الطلاب الذين حصلوا على ٧٠ علامة فأكثر .
- ٢) النسبة المئوية للطلبة الذين تنحصر علاماتهم بين ٦٠ و ٠٨ علامة

ج) إذا كان
$$\int_{-1}^{1} \left(\frac{1}{7} a(m)\right)$$
. $e^{-1} = 1$ ، فما قيمة $\int_{-1}^{1} \left(a(m) + v + (m) + v + (m)\right)$. $e^{-1} = 1$

$$\mathbf{T} = (\mathbf{1} - \mathbf{0} \cdot (\mathbf{0}) - \mathbf{0}$$
علماً بأن $\mathbf{0} \cdot (\mathbf{0}) - \mathbf{0} \cdot (\mathbf{0}) = \mathbf{T}$

انتهت الأسئلة

إعداد الأستاذ: سائد الحلاق

