مدة الاختبار : ساعة ونصف

اختبارنصف الفصل الأول في مادة الرباضيات

إعداد المعلم: أ.موسى إبراهيم خضر

مجموع الدرجات: ٥٠ درجة

للصف: الحادي عشر الفرع العلمي

السؤال الأول / اختر الإجابة الصحيحة مما يلي :

ا) إذا كانت
$$(-1 \circ (-1 \circ 1))$$
 ، وكان $(-1 \circ 1)$ ، فإن إحداثيات النقطة ب هي :

$$-$$
۲) إذا كانت $\overline{\dot{m{ au}}}=(-2$ ، $m{ au}$ ، فإن $-$ ا $-$ ۲ $ar{m{ au}}=$

هي: هي التي تجعل المتجه
$$(m)-m$$
عمودي على (m) هي:

ن المستوى س ، وكان
$$\frac{1}{2}$$
 المستوى س ، فإن العلاقة بين المستقيمين $\frac{1}{2}$ ، $\frac{1}{2}$ هي :

$$imes$$
) متجه الوحدة الذي يُعاكس المتجه $\overline{(- 2 \cdot 1)}$ هو :

$$\left(\frac{\overline{r}\sqrt{r}}{r},\frac{\xi-r}{r},\frac{1}{\sqrt{r}}\right)\left(1-\left(\frac{\overline{r}\sqrt{r}}{r},\frac{\xi}{r},\frac{1}{r}\right)\right)\left(\frac{\overline{r}\sqrt{r}}{r},\frac{1}{r},\frac{1}{r}\right)\left(\frac{\overline{r}\sqrt{r}}{r},\frac{1}{r},\frac{1}{r}\right)\right)\left(\frac{\overline{r}\sqrt{r}}{r},\frac{1}{r},\frac{1}{r}\right)\left(\frac{\overline{r}\sqrt{r}}{r},\frac{1}{r},\frac{1}{r}\right)\left(\frac{\overline{r}\sqrt{r}}{r},\frac{1}{r},\frac{1}{r}\right)\right)$$

٨) عدد المستويات التي تحددها ثلاثة نقاط مستقيمة هي :

إذا كانت العبارة ف عبارة صائبة ، والعبارة نعبارة خاطئة ، فإن العبارة الصائبة مما يلي هي :

$$0 \sim \wedge 0$$
 (ع $0 \Leftrightarrow (0 \leftrightarrow 0)$ ج $0 \leftrightarrow 0 \leftrightarrow 0$ د $0 \leftrightarrow 0 \leftrightarrow 0$ د $0 \leftrightarrow 0 \leftrightarrow 0$

ا الحانت \sim ف عبارة خاطئة ، فإن قيمة الصواب للعبارة $\upsilon \rightarrow (\upsilon \lor \upsilon)$ هي :

ا ١٨) نفي العبارة : " إذا كان $\Upsilon \geq - \Upsilon$ أو $\circ^{- \Upsilon} = \circ$ Υ فإن m اقتران زوجي " هي :

أ)
$$\Upsilon \leq -7$$
 أو $\circ^{-7} \neq \circ$ و w^7 اقتران ليس زوجي أ

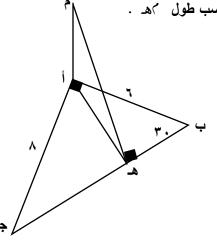
ج) إذا كان
7
 2 أو $^{-7}$ $^{-7}$ فإن 7 اقتران ليس زوجي د) 7 أو $^{-7}$ $^{-7}$ أو 7 أو 7

ج) إذا كان
$$\sqrt{\circ}$$
 عدد غير نسبي فإن ٣ ^س اقتران غير آسي د) إذا كان ٣ ^س اقتران غير آسي فإن $\sqrt{\circ}$ عدد نسبي

السؤال الثاني / ١٠ درجات)

) إذا كان
$$\frac{7}{7} = (-7)$$
 ، $\frac{1}{7} = (-7)$ ، وكان $\frac{1}{7} = \frac{1}{7} + 7$ ، احسب $\frac{1}{7}$. احسب $\frac{1}{7}$.

. ($\upsilon \leftarrow \upsilon \sim$) \land ($\upsilon \sim \lor \upsilon$) . كوّن جدول الصواب الخاص بالعبارة :


٣) إذا كان جتاه،
$$=\frac{\overline{\psi}}{\gamma}$$
 ، جتاه، $=\frac{1}{\gamma}$ ، وكانت ه، هه، هه، هي الزوايا الاتجاهية التي يصنعها المتجه $\overline{\psi}$ مع المحاور الاحداثية في الفراغ ، احسب قياس الزاوية التي يصنعها المتجه $\overline{\psi}$ مع المحور العيني .

السؤال الثالث / ١٣ درجة)

- - ٢) ضع إشارة صح أو خطأ :
 - أ. إذا لم يتقاطع المستقيمان ، فإنهما حتماً متوازيان .
 - ب. إذا كان لدينا ثلاثة مستويات مختلفة ، فإنها تتقاطع في خط مستقيم .
- ت. إذا تقاطع مستقيم مع مستوى في أكثر من نقطة فإن المستقيم يقع بأكمله في المستوى .
- ث. إذا توازي مستقيم مع مستوى ، فإن هذا المستقيم يوازي جميع المستقيمات التي تقع في ذلك المستوى .
 - ج. يمكن تحديد المستوى من خلال مستقيمان متعامدان .
 - - أ. آ. بَ
 - ب. ا

السؤال الرابع /

- ١) باستخدام المتجهات : أثبت أن قُطرا المُربع متعامدان .
- . $(\checkmark\lor \lor) \leftarrow \lor \equiv (\checkmark \leftarrow \lor)\lor (\lor \leftarrow \lor)$ بدون استخدام جداول الصواب ، أثبت أن :

انتهت الأسئلة مع تمنياتي لكم بالنجاح والتفوق مُعلم المادة / أ . موسى إبراهيم خضر

الإجابات

إجابة السؤال الأول /

١٢	11	1.	٩	٨	٧	7	٥	٤	٣	۲	١	الفقرة
Í	د	Í	ج	Í	J•	J•	Í	د	ج	ج	÷	الاجابة

إجابة السؤال الثاني /

•
$$\dot{\omega}_{3}$$
 () $\dot{\gamma} = \frac{1}{2} - (\dot{\gamma} + \dot{\gamma}) = (-7) +$

• فرع ٢)

(ن∨~ن~)∧(~∨√)	~ ف ← ن	ف∨~ن	υ~	~ ڧ	่อ	ف
ص	ص	ص	خ	Ċ	و	ص
و	ص	ص	ص	خ	خ	ص
Ċ	ص	خ	خ	ص	ص	خ
Ċ	خ	ص	ص	ص	Ċ	خ

• is
$$\pi$$
) $\operatorname{cd}^{\gamma}(a_{1}+\operatorname{cd}^{\gamma}(a_{2}+\operatorname{cd}^{\gamma}(a_{2})=1)) + \left(\frac{\sqrt{\gamma}}{\gamma}\right)^{\gamma} + \left(\frac{1}{\gamma}\right)^{\gamma} + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π) $\operatorname{cd}^{\gamma}(a_{2}) + \operatorname{cd}^{\gamma}(a_{2}) = 1$
• is π)

إجابة السؤال الثالث /

• فرع ۱)

ن→(ن∨ن)	ف ∨ ن	· · · · · · · · · · · · · · · · · · ·	<i>ن</i> ~ ∧(<i>ن</i> ← <i>ن</i>)	ف ← ن	<i>ن</i> ~	~ ن	υ	ف
ص	ص	ص	Ċ	ص	خ	خ	9	ص
ص	ص	ص	Ċ	Ċ	و	خ	ċ	ص
ص	ص	ص	Ċ	ص	خ	٩	و	خ
ص	خ	ص	ص	ص	و	و	ن	خ

من الجدول السابق نلاحظ أن العمود السابع والعمود التاسع متكافئان ، إذن العبارتان متكافئتان .

فرع ۲)

• فرع ٣)

ر)
$$\vec{q} \cdot \vec{v} = \left| \vec{q} \right| \left| \vec{v} \right|$$
 ابن اجماعہ $\vec{q} \cdot \vec{v} = \vec{r} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r}$ ابن اجماعہ $\vec{q} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r} \cdot \vec{r}$

ب) بتربيع المطلوب وكتابة القانون :
$$\left|\vec{q} - 7\vec{\psi}\right|^{\gamma} = \left|\vec{q}\right|^{\gamma} + \left|\vec{\gamma}\vec{\psi}\right|^{\gamma} - 7\left|\vec{q}\right| \left|\vec{\gamma}\vec{\psi}\right|$$

$$\mathsf{V} = \mathsf{I} = \mathsf{V} + \mathsf{I} = \mathsf{V} + \mathsf{I} + \mathsf{I} = \mathsf{V} + \mathsf{I} + \mathsf{I} = \mathsf{V} + \mathsf{I} + \mathsf{I} = \mathsf{I} = \mathsf{I} + \mathsf{I} = \mathsf{I} =$$

($\dot{v} \lor \dot{v} = \dot{v} = \dot{v} \lor \dot{v}$

(لأن ~ ف∨~ ف ≡~ ف)

 $(\dot{\mathcal{C}} \smile \smile \smile) \equiv \dot{\mathcal{C}} \smile \smile)$

(حسب خاصية التجميع)

إجابة السؤال الرابع /

• فرع ۱)

المعطيات / الشكل أب جر مربع

المطلوب / إثبات أن أ
$$=$$
 \pm $+$ أي أن أ $=$ $+$ صفر

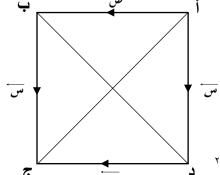
$$\overrightarrow{w} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{w} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{w} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{w} + \overrightarrow{w} + \overrightarrow{w} = \overrightarrow{w} + \overrightarrow{w} +$$

$$\overrightarrow{-} - \overrightarrow{-} = \overrightarrow{-} + \overrightarrow{-} = \overrightarrow{-} - \overrightarrow{-} :$$

$$\overrightarrow{|} \overrightarrow{|} \overrightarrow{|} \overrightarrow{|} - \overrightarrow{|} \overrightarrow{|} \cdot \overrightarrow{|} \overrightarrow{|} + \overrightarrow{|} \overrightarrow{|} \cdot \overrightarrow{|} \overrightarrow{|} = (\overrightarrow{|} \overrightarrow{|} - \overrightarrow{|} \overrightarrow{|}) (\overrightarrow{|} \overrightarrow{|} + \overrightarrow{|} \overrightarrow{|}) = \overrightarrow{|} \overrightarrow{|} \cdot \overrightarrow{|} \overrightarrow{|} : .$$

$$\vec{b} = \vec{b} \cdot \vec{b} = \vec{b} \cdot$$

لكن أضلاع المربع متساوية ، إذن $|\overrightarrow{w}| = |\overrightarrow{w}|$


$$\overrightarrow{l} = \overrightarrow{l} =$$

. . قُطرا المُربع متعامدان .

$$(\leftarrow) \lor (\leftarrow) \lor (\leftarrow)$$
الطرف الأيمن /

$$(\land \lor \lor \lor \lor \lor \lor \lor) \lor (\lor \lor \lor) \equiv$$

$$\equiv \omega \rightarrow (\omega \vee \gamma)$$

• فرع ٣)

المعطيات / أ / المستوى س

$$^{\circ}$$
 ۳۰= ک ، $\overline{\mathsf{d}}$ ، $\mathsf{A}=\overline{\mathsf{d}}$ ، $\mathsf{A}=\overline{\mathsf{d}}$

المطلوب / طول مه

البرهان / نأ أ المستوى س

- <u> بج</u> ⊥ م ∵
- نظرية الأعمدة الثلاث) ... أه \perp بجم (حسب عكس نظرية الأعمدة الثلاث) ...
 - ∴ ∆أ هـ ب قائم الزاوية في هـ

نصف طول الوتر) $\frac{1}{16} = \frac{1}{16} \times 10^{-2}$ (حسب نظرية : في المثلث القائم الزاوية ، الضلع المقابل للزاوية τ يساوي نصف طول الوتر) τ

بتطبيق نظرية فيثاغورس على ۵هـأ

$$(\lambda a)^{\prime} = (\lambda a)^{\prime} + (\lambda)^{\prime}$$

$$(\lambda \omega)' = \rho + \Gamma I \implies \overline{\lambda \omega} = \sqrt{\overline{\overline{\overline{V}}}} = 0$$