بسدالله الرحمن الرحيد

دولة فلسطين

وزارة التربية والتعليم العالى

مديرية التربية والتعليم جنوب الخليل

الاختبار الموحد لمديرية جنوب الخليل

الفرع العلمي/ الورقة الأولى

الاسم :.....

المبحث: الرياضيات الصف: الثاني ثانوي علمي

التاريخ: ٦ / ١ / ١٩ ٢٠ ٢

مجموع العلامات: (۱۰۰) علامة الزمن: ساعتان ونصف فقط

اختبار نهاية الفصل الدراسي الأول للعام الدراسي ٢٠١٨ / ٢٠١ >

ملاحظة: عدد أسئلة الورقة (ستة) أسئلة. أجب عن (خمسة) أسئلة منها فقط.

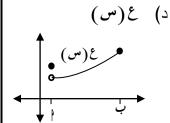
القسم الأول: يتكون هذا القسم من أربعة أسئلة، وعلى المشترك أن يجيب عنها جميعها.

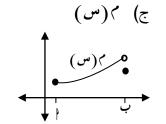
(۳۰ علامة) السؤال الأول: أنقل رمز الإجابة الصحيحة إلى دفتر الإجابة في كل مما يلي:

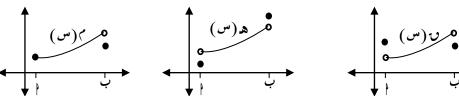
- (۱) إذا كان متوسط تغير الاقتران $v(m) = r^{-1} + m + 1$ في الفترة $r = r^{-1}$ يساوي $r = r^{-1}$ فيم الثابت $r = r^{-1}$
 - د) صفر، ۲
- ب) صفر، ٢ ج) ٢
- أ) صفر
- $\frac{\pi}{V}$ إذا كان $\omega = \overline{\mathsf{Bl}} \omega + \mathsf{dl} \omega$ ، $\omega \in \mathbb{R}$ ، فإن $\frac{\sigma}{V}$ تساوي:
- د**) قتاس**
- ج) قا*س*
- أ) _قا*س* +) _قتاس

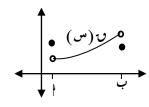
- - ٣) منحنى الاقتران الذي يكون متزايد على [١ ، ب] هو:

أ) ن (س) ب) ه (س)









- إذا كانت أمصفوفة من الرتبة الثانية بحيث أن: $| h_m | = 7$ ، $| Y_m | = 7 7$ ، وكانت $| \frac{1}{\sqrt{|T|}} | = 1$ ، فإن
 - قيمتي س ، ص على الترتيب هما:

- 9-67 (2
- - \circ) إذا كان $\upsilon(\omega) = a^{\omega-1} + \pi$ لو $\left(\omega^{1} + 1\right)$ ، فإن $\upsilon(\cdot) = 0$

٠ (ب

ラ) ھ ^ー + ۲ د) ه

أ) هـ ٢-

- - ٦) معدل تغير مساحة المربع بالنسبة إلى محيطه عندما يكون محيطه ٢٤سم هو:
- د) ۱۲ سم کرسم
- ج) ٦ سم السم

(V-) إذا كان مقدار التغير في الاقتران v(m) يساوي v(m) يساوي v(m) فإن v(m)ب) صفر ج) ۲ د) ۶ اذا كانت المن عبر عبر ثلاث مصفوفات مربعة من الرتبة ٥، فإن إحدى العبارات الآتية صحيحة دائماً: أ) إذا كانت $1 \cdot \mathbf{v} = 1 \cdot \mathbf{z}$ ، فإن $\mathbf{v} = \mathbf{z}$. $\mathbf{v} = \mathbf{v}$ فإن $1 = \mathbf{v}$ أو $\mathbf{v} = \mathbf{v}$. وا المنافقية عندما $\mathbf{v} = \mathbf{v} + \mathbf{v}$ وا المنابت بالمنافقية عندما $\mathbf{v} = \mathbf{v} + \mathbf{v}$ وا المنابت بالمنابق المنابق ب تساوى: أ) ۳_ ج) ۱ ا الشكل المجاور يمثل منحنى u(m)، فإن الشكل المجاور يمثل منحنى الشكل المجاور بمثل منحنى المتحدد الم العبارة الصحيحة مما يلي هي: (*)ひく(*)/ひく(*)//ひ (*) (T) v ≺ (T) v ≺ (T) v (-(*) い(*) といく(*) いっぱい (*) $(\Upsilon)^{\prime} \mathcal{U} \prec (\Upsilon) \mathcal{U} \prec (\Upsilon)^{\prime} \mathcal{U}$ (2) (۱۱) إذا كانت m+7m=7 هي معادلة العمودي على المماس المرسوم لمنحنى الاقتران $\sigma(m)$ عند نقطة التماس التي إحداثها السيني m=Y، حيث $\upsilon(m)\times\upsilon(m)=\frac{2}{m}$ ، $\upsilon(m)\neq 0$ ، فإن قيمة الثابت ك هي: $\frac{1}{\sqrt{n}}$ (1) ج) ۲۲ د) ۲ _ (÷ ج) (د) ۳ $=\left(\frac{\sqrt{\gamma}}{\gamma}\right)$ اذا کان $\sigma(m)=\frac{\left[\frac{\sqrt{\gamma}}{m}\right]}{m-m}$ ، $m\neq m$ ، فإن $\sigma(m)=\frac{\sqrt{\gamma}}{m}$ اً) ج) ۳,٥ د) غير موجودة (13) إذا كان (7) = 0 ، (7) = 3، فإن نهي (7) = 3 نساوي: ٤ (أ 17 (2 v (-ج) ٩

2

۱۵) إذا كان $\mathfrak{F}(m)$ كثير حدود بحيث أن $\mathfrak{F}(m) = (m-1)^{\mathsf{Y}}(m-1)^{\mathsf{Y}}$. فإن مجموعة قيم س التي يكون عندها نقاط انعطاف للاقتران ق (س) هي: ج) (۲ ، ۰) {\} (\- {o \ \ \ \ \ \) (\ {0 6 1} (2 ١٦) يتحرك جسيم في خط مستقيم وفق العلاقة 1 ع 2 ، حيث أن ع سرعة الجسم بوحدة 2 ، ف المسافة المقطوعة بالأمتار، فإذا كان تسارع الجسم يساوي $\Lambda \wedge / \hat{c}^{T}$ ، فإن قيمة الثابت أ الموجبة تساوي: $\frac{1}{5}$ (=ا إذا كانت $\begin{pmatrix} 1 & \cdot & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} 1 & \cdot \\ \cdot & \cdot \end{pmatrix}$ ، وكانت $(1^{\vee} \cdot)^{-1} = \begin{pmatrix} 1 & \cdot \\ \cdot & \cdot \end{pmatrix} = \begin{pmatrix} 1 & \cdot \\ \cdot & \cdot \end{pmatrix}$ ، فإن المصفوفة ١٢ هي: $\begin{bmatrix} \xi - & \gamma \\ \gamma & \gamma - \end{bmatrix} \begin{pmatrix} 0 & \gamma & \gamma \\ \gamma & \xi - \end{bmatrix} \begin{pmatrix} 0 & \gamma & \gamma \\ \gamma & \xi \end{pmatrix} \begin{pmatrix} 1 & \gamma & \gamma \\ \gamma & \xi \end{pmatrix} \begin{pmatrix} 1 & \gamma & \gamma \\ \gamma & \xi \end{pmatrix}$ ۱۸) إذا كان الشكل المجاور يمثل منحنى v(m) المعرف على [-٢ ، ٤]، فإن قيمة ج التي تعنيها نظرية القيمة المتوسطة هي:]£ 6 Y - [(2 [£ 6 Y -] (E {£ 6 Y -} (-) (E ا إذا كان (ه υ) اإذا كان (ه υ) المان (ع) المان υ (ع) المان (ع) المان الم ا تساوي: للاقتران 0 (س) هو: د) ع ۲ (ب ج) ٣ 1 (1

(۲۰ علامة)

لسؤال الثاني:

أ) دون استخدام قاعدة لوبيتال، جد v(m) للاقتران $v(m) = w\sqrt{m}$ ، $w \ge 0$ باستخدام تعريف المشتقة.

ب) من قمة برج يرتفع عن سطح الأرض • • • • ، أطلق جسم رأسياً للأعلى فكانت إزاحته ف بالأمتار (٦ علامات) عن قمة البرج بعد ν ثانية تعطى بالقاعدة: ν = • ν ν . احسب سرعة ارتطام الجسم بسطح الأرض.

(۲۰ علامة)

السوال الثالث

أ) استخدم طریقة جاوس في حل النظام الآتي: (Λ)

-2 = -0 + 3 = 7 + 2 = 7 + 3 = 7

ب) الشكل المجاور يمثل منحنى المشتقة الثانية لمنحنى الاقتران كثير الحدود $v(\omega)$.

اذا علمت أن $\upsilon - (-\circ) = \upsilon$ جد كلاً مما يأتي:

۱) فترات النقعر ونقاط الانعطاف لمنحنى الاقتران v(m).

۲) قاعدة الاقتران ${oldsymbol v}({oldsymbol w})$ علماً بأن معادلة مماسه عند ${oldsymbol w}={oldsymbol v}$ هي ${oldsymbol w}={oldsymbol w}-{oldsymbol v}$ ا ${oldsymbol w}$.

(۲۰ علامة)

السؤال الرابع:

أ) بين أنه يوجد مماسين متوازيين لمنحنى العلاقة $m^{7}+m^{7}=mm+1$ عند نقطتي تقاطعها مع (Λ علامات) المستقيم الذي معادلته m=m ، ثم جد زاوية ميلهما ؟

(۱۲ علمة) با إذا كان $v(w) = w(w-\xi)^{7}$ ، $w \in [-1]$ ، $v(w) = w(w-\xi)^{7}$ ، $v(w) = w(w-\xi)^{7}$

۱) فترات التزايد والتناقص للاقتران v(m).

۲) القيم القصوى المحلية لمنحنى الاقتران v(m) محددًا المطلقة منها إن وجدت.

القسم الثاني: يتكون هذا القسم من سؤالين، وعلى المشترك أن يجيب عن أحدهما فقط.

السؤال الخامس:

ر کان
$$\mathfrak{S}(\mathsf{Y} + \mathsf{P}) = \mathsf{P}(\mathsf{P} + \mathsf{P})$$
 قابلاً للاشتقاق، فما قیمة نما ما قیمة نما و کان $\mathfrak{S}(\mathsf{P} + \mathsf{P}) = \mathsf{P}(\mathsf{P} + \mathsf{P})$ قابلاً للاشتقاق، فما قیمة نما و کان $\mathfrak{S}(\mathsf{P} + \mathsf{P}) = \mathsf{P}(\mathsf{P} + \mathsf{P})$ قابلاً للاشتقاق، فما قیمة نما و کان نما و کا

ب) في تمام الساعة الثانية عشرة ظهراً، كانت الباخرة (ب) تقع على بعد ٣٠كم شمال الباخرة (١) (٦ علامات) وتسير شرقاً بسرعة ١٠كم/ساعة، وتحركت الباخرة (١) بعد تحرك الباخرة (ب) بساعة واحدة، بسرعة ١٠كم/ساعة شمالاً، فمتى تكون المسافة بين الباخرتين أقل ما يمكن؟

السؤال السادس:

ب) إذا كان المستقيم $= a^{7}$ يقطع منحنى كثير الحدود من الدرجة الثانية ك (m) عند $m = m_{1}$ (7) علامات $(m) = m_{2}$ (m) > 0 (m) > 0

انتهت الأسئلة مع تمنياتنا لكم بالتوفيق والنجاح

بسسم الله الرحمن الرحيس

دولة فلسطين

وزارة التربية والتعليم العالي

مديرية التربية والتعليم جنوب الخليل

مديرية التربية والتعليم جنوب الخليل State of Palestine الصف: الثاني ثانوي علمي الاختبار الموحد لمديرية جنوب الخليل حَوْلَة فِلْسَيْطِينَ التاريخ: ٦ / ١ / ٢٠١٩

الاسم: الإجابة النموذجية

المبحث: الرياضيات

الصف: الثاني ثانوي علمي

الفرع العلمي/ الورقة الأولى مجموع العلامات: (١٠٠) علامة الزمن: ساعتان ونصف فقط

اختبار نهاية الفصل الدراسي الأول للعام الدراسي ١٨ ٢٠١٩ ٢٠١٨ (۳۰ علامة) سوال الأول: أنقل رمز الإجابة الصحيحة إلى دفتر الإجابة في كلٍ مما يلي: الإجابة الصحية رقم الفقرة | رمز الإجابة الصحيحة | (1 **ت** (٢ قاس 3 ه (س) (٣ **r**- 6 1 ۲) إذا كانت ١٠٠ = ١٠٠ ، فإن ب=ج. 3 (r) \checkmark υ \prec (r) υ \prec (r) \checkmark υ (1. (11 (17 ٤-٧ **{\}** (10 (17 (17]£ 6 Y -[(11 (7 .

أ) دون استخدام قاعدة لوبيتال، جد $oldsymbol{arphi}(w)$ للاقتران $oldsymbol{v}(w)=w\sqrt{w}$ ، $w\geq v$ باستخدام

تعريف المشتقة.

طريقة (١):

$$\frac{\sqrt{3} - \omega \sqrt{3} - \omega \sqrt{\omega}}{3 - \omega} = \frac{\sqrt{3} - \omega \sqrt{\omega}}{3 - \omega} = \frac{\sqrt{3} - \omega \sqrt{\omega}}{3 - \omega} = \frac{\sqrt{3} - \omega \sqrt{\omega}}{2 - \omega \sqrt{\omega}} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega \sqrt{\omega}} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega \sqrt{\omega}} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{3 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{3 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{3 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{3 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\sqrt{3} + \omega \sqrt{\omega}}{2 - \omega} \times \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} \times \frac{\omega}{2 - \omega} = \frac{\omega}{2 - \omega} \times \frac{\omega}{2$$

طريقة (٢):

$$\frac{3\sqrt{3}-\omega\sqrt{\omega}}{3-\omega} = \frac{3\sqrt{3}-\omega\sqrt{\omega}}{3-\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}{3-\omega} + \frac{3\sqrt{\omega}-3\sqrt{\omega}}{3-\omega} + \frac{3\sqrt{\omega}-\omega\sqrt{\omega}}{3-\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}{3-\omega} + \frac{3\sqrt{\omega}-3\sqrt{\omega}}{3-\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}{3-\omega} + \frac{3\sqrt{\omega}-3\sqrt{\omega}}{3-\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}{3-\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{3}-3\sqrt{\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}{3-\omega}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}$$

$$= \frac{3\sqrt{3}-3\sqrt{\omega}}$$

$$= \frac{3$$

ب) من قمة برج يرتفع عن سطح الأرض \cdot ، أطلق جسم رأسياً للأعلى فكانت إزاحته ف بالأمتار (τ علامات) عن قمة البرج بعد τ ثانية تعطى بالقاعدة: ف τ τ τ . احسب سرعة ارتطام الجسم بسطح الأرض.

الحل:-

عند ارتطام الجسم بسطح الأرض تكون إزاحته عن سطح البناية تساوي $-\cdot \circ \cdot$. أي أن: $oldsymbol{\dot{v}}=-\cdot \circ \cdot$

$$\begin{array}{l}
\cdot = \circ \cdot - \nu \circ - {}^{\mathsf{T}} \nu \circ & \longleftarrow \circ \cdot - = {}^{\mathsf{T}} \nu \circ - \nu \circ \circ \circ \\
\cdot = \circ \cdot - \nu {}^{\mathsf{T}} - {}^{\mathsf{T}} \nu & \longleftarrow \\
\cdot = (\mathsf{T} + \nu)(\circ - \nu) & \longleftarrow
\end{array}$$

 ~ 1 إما ~ 1 أو ~ 1 ~ 1 (ترفض). إذن الزمن اللازم لارتطام الجسم بسطح الأرض هو: ~ 1

$$\omega = 0 | \omega - \omega | = 0$$

سرعة ارتطام الجسم بسطح الأرض هي: $3(0) = 0 \times 1 \cdot -1 \times 0 = -7$.

لحل:-

(۲۰ علامة)

السوال الثالث:

أ) استخدم طريقة جاوس في حل النظام الآتي:

 $w - \omega + 3 = 7$ $w + 7\omega + 3 = 7$ $w + \omega - 3 = 0$

<u>لحل: -</u>

المصفوفة الممتدة المكون منها النظام هي:
$$\frac{1}{1} = \begin{bmatrix} 1 & 1 & 1 & | & 7 & 1 \\ & & & 1 & | & 1 & | & 1 \end{bmatrix}$$
 ، ونجري العمليات الآتية:

$$\begin{bmatrix}
7 & 1 & 1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
7 & 1 & 1 & 1
\end{bmatrix}$$

وبهذا حصانا على مصفوفة مثلثية علوية، فنجد قيم المجاهيل بالتعويض العكسي كما يلي:

$$-$$
 کما أن: $-$ کما أن $-$ کما أن: $-$ كما أن: $-$ ك

$$. \boxed{ 7 = \omega } \iff 7 = 7 + 1 + \omega \iff 7 = 2 + \omega - \omega$$

(-1) الشكل المجاور يمثل منحنى المشتقة الثانية لمنحنى الاقتران كثير الحدود $(-\infty)$.

(س)/し

إذا علمت أن $\upsilon = (0 -) = 0$. جد كلاً مما يأتى:

۱) فترات النقعر ونقاط الانعطاف لمنحنى الاقتران v(m).

۲) قاعدة الاقتران $\sigma(m)$ علماً بأن معادلة مماسه عند $m=\cdot$ هي m=r-0اس.

الحل: –

1) فترات التقعر ونقاط الانعطاف لمنحنى الاقتران $\sigma(m)$.

نرسم إشارة
$$\sigma^{(m)}$$
 نرسم إشارة $\sigma^{(m)}$ نرسم إشارة $\sigma^{(m)}$ نرسم إشارة $\sigma^{(m)}$

$$v(m)$$
 مقعر للأسفل على الفترة $[-\infty \ \sim -1]$ لأن $v(m) \prec v \forall m \in [-\infty \ \sim -1]$.

$$v(w)$$
 مقعر للأعلى على الفترة $[-7 \ v \ \infty]$ لأن $v'(w) \succ v \ \psi = [-7 \ v \ \infty]$

رس) مثل نقطة انعطاف لمنحنى الاقتران $\upsilon(m)$ حيث أن:

$$-$$
 عند $v=-$ ۲. $v=0$ عند من تقعره حول $v=-$ ۲. $v=0$ عند من تقعره حول $v=-$ ۲. $v=0$

۲) قاعدة الاقتران v(m) علماً بأن معادلة مماسه عند m=0 هي v(m)

منحنى $v^{-}(m)$ هو اقتران خطى، لذلك فإن v(m) هو كثير حدود من الدرجة الثالثة.

منحنی $v^{(m)}$ يقطع محور السينات عندما w=-1. . . (-7) v(-7) تمثل نقطة انعطاف للاقتران v(w) v(w) v(w) v(w) v(w) v(w) v(w) v(w) v(w)

معادلة المماس لمنحنى v(m) عند v=0 هي v=0 معادلة المماس لمنحنى v(m) عند v=0 هي v=0 معادلة المماس يساوي الميل من معادلة المماس يساوي الميل من المشتقة.

$$\mathcal{V} = \mathbf{S} \iff \mathbf{V} = (\mathbf{I}) \cup \mathbf{S} \iff \mathbf{V} = (\mathbf{I}) \cup \mathbf{S} \iff \mathbf{S} = \mathbf{V} = (\mathbf{I}) \cup \mathbf{S} = \mathbf$$

$$(\Upsilon)$$
 من المعطیات: (Υ) (Υ)

وبطرح المعادلة رقم (١) من المعادلة رقم (٢) ينتج أن: ١٥=٥٠ $\leftarrow 1$. وبتعويض قيمة ا في

المعادلة رقم (۱) ينتج أن: $- \times 1 \times 1 + 1$ المعادلة رقم (۱) ينتج أن

$$oxed{ \left[oldsymbol{v} + oldsymbol{w} - oldsymbol{v} - oldsymbol{v} - oldsymbol{v} + oldsymbol{w} - oldsymbol{v} -$$

السوال الرابع:

أ) بين أنه يوجد مماسين متوازيين لمنحنى العلاقة $m^{7}+m^{7}=mm+1$ عند نقطتي تقاطعها مع (Λ علامات) المستقيم الذي معادلته m=m ، ثم جد زاوية ميلهما ؟

الحل: –

نجد نقاط تقاطع المستقيم = w مع العلاقة $w^{7} + w^{7} = w + 1$ ، وذلك بتعويض = w في العلاقة:

$$1 \pm = \omega \iff 1 = {}^{\mathsf{T}}\omega \iff 1 + {}^{\mathsf{T}}\omega = {}^{\mathsf{T}}\omega + {}^{\mathsf{T}}\omega \iff 1 + \omega = {}^{\mathsf{T}}\omega + {}^{\mathsf{T}}\omega$$

عندما $m=\pm 1$ فإن $m=\pm 1$ وذلك من خلال التعويض في معادلة المستقيم $m=\pm 1$

إذن هنالك نقطتي تقاطع هما: (-1 + 1) + (1 + 1)، وبذلك فإنه يوجد مماسين لمنحنى العلاقة.

$$w^{7} + w^{7} = www + 1 + www = www + www + www = www = www + www = www = www = www + www = www + www = ww$$

$$1-=rac{7+1-}{1+7-}=rac{(1-x^2)-1-}{(1-)-(1-x^2)}=rac{2\omega}{2\omega}$$
 هو: $(1-x^2)-(1-x^2)=\frac{2\omega}{2\omega}$ هو: $(1-x^2)-(1-x^2)=\frac{2\omega}{2\omega}$

$$1-=\frac{\mathsf{Y}-\mathsf{I}}{\mathsf{I}-\mathsf{I}}=\frac{(\mathsf{I}\times\mathsf{Y})-\mathsf{I}}{\mathsf{I}-(\mathsf{I}\times\mathsf{Y})}=\frac{\mathsf{S}_{\infty}}{\mathsf{S}_{\infty}}$$
 هو: (۱ ، ۱) هو: النقطة (۱ ، ۱)

إذن يوجد هنالك مماسان متوازيان لمنحنى العلاقة حيث أن ميلاهما متساوي ويساوي $\boxed{-1}$ ، حيث أن زاوية ميلاهما هي: $\boxed{\circ 170}$.

(17) علمة) فجد ما يلي: $(m-\xi)^{m}$ ، $m\in[-1]$ ، [-1] فجد ما يلي:

۱) فترات التزاید والتناقص للاقتران v(m). ۲) القیم القصوی المحلیة له v(m) محددًا المطلقة منها إن وجدت.

<u>لحل: -</u>

v(w) اقتران متصل على الفترة $[-1 \ \circ \]$ لأنه حاصل ضرب متصلين (كثيري حدود) على نفس الفترة.

 $oldsymbol{v}(oldsymbol{w})$ اقتران قابل للاشتقاق على الفترة] $oldsymbol{-1}$ ، $oldsymbol{-0}$ لأنه حاصل ضرب اقترانين قابلين للاشتقاق على نفس الفترة.

$$^{\mathsf{Y}}(\mathbf{\xi}-\mathbf{\omega})\mathbf{\omega}^{\mathsf{Y}}+^{\mathsf{Y}}(\mathbf{\xi}-\mathbf{\omega})=(\mathbf{\omega})^{\mathsf{Y}}\mathbf{\omega}$$

$$(\omega + (\xi - \omega))^{\dagger} (\xi - \omega) =$$

$$(1-\omega)^{\Upsilon}(\xi-\omega)\xi=$$

v = 0 ، v = 0 ، v = 0 ، v = 0 ، v = 0 ، v = 0 ، v = 0 ، v = 0 ، v = 0 ، v = 0 . v = 0

$$(\omega)$$
 ایشاره ω ایشاره ω ایشاره ω (س) ایشاره ω ایشاره ω (س) ایشاره ω (س)

۱) فترات التزايد والتناقص للاقتران v(m).

$$\mathfrak{O}(m)$$
 متناقص على الفترة $[-1 : 1]$ لأن $\mathfrak{O}^{\prime}(m) \prec \cdots \forall m \in]-1$ ، $[-1 : 1]$

٢) القيم القصوى محدداً المطلقة منها إن وجدت.

* $\upsilon(-1) = 0$ ۱ تشكل قيمة قصوى عظمى محلية ومطلقة للاقتران $\upsilon(m)$ حيث أن:

۲.
$$\upsilon'(-1)$$
 غير موجودة.

$$(w)$$
 على يمين $w=-1$ سالبة. (بداية تناقص لمنحنى (w)

$$arphi$$
3. $arphi(-1)=\circ$ ۱ $arphi$ وبالتالي هي أعظم قيمة يتخذها الاقتران على الفترة $[-1$ ، $\circ]$.

$$v$$
 تشكل قيمة قصوى صغرى محلية ومطلقة للاقتران $v(w)$ حيث أن:

۳.
$$\upsilon$$
 (س) تغیر من إشارتها حول υ = ۱ من سالب إلى موجب.

ع.
$$v(1) = -7$$
 هي أعظم قيمة للاقتران $v(w)$ في الفترة $v(w) = -7$ هي أعظم قيمة للاقتران $v(w) = -7$

$$v = v = v$$
 تشكل قيمة قصوى عظمى محلية للاقتران $v = v = v$ أن:

$$(m)$$
 على يسار $m=0$ موجبة. (نهاية تزايد لمنحنى (m))

* v(x) = v(x) لا تشكل قيمة قصوى لمنحنى الاقتران v(w) لأن v(w) لم تغير من إشارتها حولها.

القسم الثاني: يتكون هذا القسم من سؤالين، وعلى المشترك أن يجيب عن أحدهما فقط.

ال الخامس:

ر العامات)
$$\mathcal{C}(2m+0) = m^{2m} + 2m$$
 قابلاً للاشتقاق، فما قيمة $\frac{1}{2}$ النا كان $\mathcal{C}(2m+0) = m^{2m} + 2m$ قابلاً للاشتقاق، فما قيمة $\frac{1}{2}$

لحل: -

عند تعویض
$$3=1$$
 في النهاية ينتج أن: $\frac{\upsilon((1)^{7}+1\times 1)}{(1)^{7}}=\frac{(1)^{7}+1\times 1}{(1)^{7}}=\frac{\upsilon(7)}{(1)^{7}}$ وللحصول على قيمة $\upsilon(7)$

اذن:
$$\frac{\upsilon((1)^{7}+1\times 1)}{\Box_{0}} = \frac{(1)^{7}+1\times 1}{1} = \frac{(1)^{7}+1}{1} = \frac{(1)^{7}$$

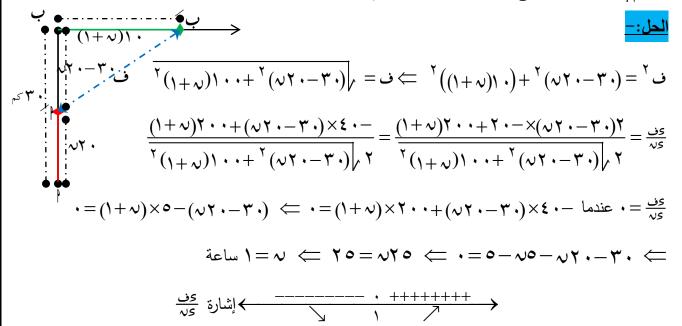
$$\mathfrak{v}(\mathsf{T} + \mathsf{o}) = \mathsf{w} + \mathsf{T} + \mathsf{v} \implies \mathsf{T} + \mathsf{v} = \mathsf{v} + \mathsf{v} + \mathsf{o} = \mathsf{v} + \mathsf{v} +$$

$$\frac{\circ}{7} = (7)^{2} \circ (7)^$$

$$\frac{2}{2} \times \frac{2}{7} = \frac{(7)^{7} \cup (2)}{7} = \frac{(27)^{7} \cup (27)^{7} \cup (27)^{7}}{\frac{7}{2}} = \frac{(7)^{7} \cup (27)^{7}}{\frac{7}{2}} = \frac{7}{7} = \frac{7}{7} = \frac{1}{7} = \frac{1$$

8

ب) في تمام الساعة الثانية عشرة ظهراً، كانت الباخرة (ب) تقع على بعد ٣٠٠ م شمال الباخرة (١) (٦ علامات) وتسير شرقاً بسرعة ١٠ كم/ساعة، وتحركت الباخرة (١) بعد تحرك الباخرة (ب) بساعة واحدة، بسرعة ٢٠ كم/ساعة شمالاً، فمتى تكون المسافة بين الباخرتين أقل ما يمكن؟



تكون المسافة بين السفينتين أقل ما يمكن عندما v=1 ساعة بعد حركة السفينة الثانية.

إذن تكون المسافة بين السفينتين أقل ما يمكن عند الساعة الثانية بعد الظهر.

(۱۰علامات)

(٤ علامات)

الحل:-

السوال السادس:

نظرية رول على [س، ، س،]، ثم جد قيمة (ح) التي تحددها النظرية.

الحل: –

نبحث في تحقق شروط نظرية رول للاقتران $v(m) = \underbrace{L_{q} \, b}_{q} \, 0$ على الفترة $v(m) \, a$ نبحث في تحقق شروط نظرية رول للاقتران $v(m) \, a$

 $oldsymbol{arphi}(w) = oldsymbol{arphi}(w)$ متصل على الفترة $egin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}$ لأن ك(w) كثير حدود وك $(w) > \cdot$ ، $\forall w \in \mathcal{S}$.

$$\upsilon(m) = \underbrace{\mathsf{L}}_{\mathsf{L}} \ \mathsf{L}(m)$$
 قابل للاشتقاق على الفترة $\mathsf{L}(m) = \mathsf{L}(m)$ من $\mathsf{L}(m) = \mathsf{L}(m)$.

 $\upsilon(\omega_{\Lambda}) = \underbrace{\vdash_{\psi}}_{\bullet} (\omega_{\Lambda}) = \underbrace{\vdash_{\psi}}$

m=m ، وعند نقاط التقاطع تتساوی الاقترانات، ومن m=m ، عند m=m) عند m=m ، وعند نقاط التقاطع تتساوی الاقترانات، ومن

معادلة المستقيم $\omega = \mathbf{a}^{\Upsilon}$ نجد أن:

نقاط التقاطع هما:
$$(w_1) = (w_2) = (w_3) & (w_4) & (w_4) = ($$

إذن تحققت شروط نظرية رول للاقتران $v(m) = \underbrace{\mathsf{L}}_{\mathsf{e}}(w)$ على الفترة $v(m) = \mathsf{L}_{\mathsf{e}}(w)$ هذا يؤدي يوجد على

الأقل عدد مثل $s \in \mathbb{R}^{n}$ ، سم $[s \in \mathbb{R}^{n}]$ الأقل عدد مثل عدد مثل المتعادمة المتعادم المتعادمة المتعادمة المتعادمة المتعادمة المتعادمة المتعادمة المتعادمة ال

$$\frac{b(s)}{b(s)} = \frac{7}{(s)} + \frac{7}{(s)} = \frac{1}{(s)} + \frac{7}{(s)} = \frac{1}{(s)} + \frac{7}{(s)} +$$

 $\Rightarrow \gamma + \gamma + \gamma = \gamma \implies (1 + \gamma)^{-1}$ قيمة $\gamma = \gamma$ التي تحددها النظرية.

انتهت الإجابة النموذجية مع تمنياتنا لكم بالتوفيق والنجاح

لجنة مبحث الرياضيات/ مديرية جنوب الخليل