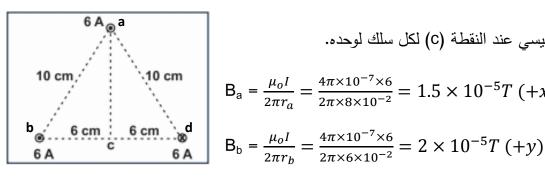
حل أسئلة الفصل الأول من الوحدة الثالثة (المجال المغناطيسي)

كتاب الفيزياء المنهاج الجديد 2018

أسئلة الفصل صفحة 107

:1_w

7	6	5	4	3	2	1	رقم السؤال
ج	ب	ح	ĺ	ح	7	ĺ	رمز الأجابة


س2: أ. المجال المغناطيسي: هو عبارة عن منطقة يظهر فيها تأثير المغناطيس على المغناطيسات الأخرى أو المواد المغناطيسية.

كثافة خطوط المجال المغناطيسي: هي عدد خطوط المجال المغناطيسي الذي يمر من مساحة معينة بحيث يزداد كلما اقتربنا من أحد أقطاب المغناطيسي.

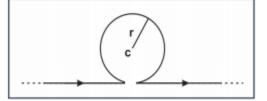
قانون أمبير: لأي مسار مغلق يكون مجموع حاصل الضرب النقطي لشدة المجال المغناطيسي مع طول ذلك الجزء من المسار المغلق يساوي المجموع الجبري للتيارات التي تخترق المسار المغلق مضروباً في ثابت النفاذية المغناطيسية للفراغ ، µ.

ب. علل:

- 1. لأنه لا يوجد قطب مغناطيسي مفرد لذلك فإن خطوط المجال المغناطيسي تخرج من القطب الشمالي باتجاه القطب الجنوبي خارج المغناطيس.
 - 2. لأن لكل نقطة على خط المجال المغناطيسي لها اتجاه واحد فقط فلو تقاطع خطا مجال مغناطيسي معاً فسيكون لهذه النقطة اتجاهين بنفس الوقت وهذا مستحيل.
 - 3. لأن شدة المجال المغناطيسي الناتج من تيار يمر في سلك مستقيم تتناسب عكسياً مع بُعد النقطة عن محور السلك.
 - 4. لأن شدة المجال المغناطسي خارج الملف الحلزوني صغيرة جداً مقارنة بقيمتها في داخل الملف.

س3: نحسب المجال المغناطيسي عند النقطة (C) لكل سلك لوحده.

$$B_{a} = \frac{\mu_{o}I}{2\pi r_{o}} = \frac{4\pi \times 10^{-7} \times 6}{2\pi \times 8 \times 10^{-2}} = 1.5 \times 10^{-5}T \ (+x)$$

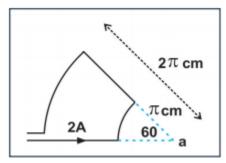

$$\mathsf{B}_{\mathsf{b}} = \frac{\mu_{o}I}{2\pi r_{\mathsf{b}}} = \frac{4\pi \times 10^{-7} \times 6}{2\pi \times 6 \times 10^{-2}} = 2 \times 10^{-5}T \ (+y)$$

$$\mathsf{B}_{\mathsf{d}} = \frac{\mu_{o}I}{2\pi r_{d}} = \frac{4\pi \times 10^{-7} \times 6}{2\pi \times 6 \times 10^{-2}} = 2 \times 10^{-5}T \ (+y) \ \blacktriangleright \ \Sigma \overrightarrow{B_{y}} = 4 \times 10^{-5}T \ \blacktriangleright \ \Sigma \overrightarrow{B_{x}} = 1.5 \times 10^{-5}T$$

$$\sum \vec{B} = \sqrt{\left(\sum \vec{B_y}\right)^2 + \left(\sum \vec{B_x}\right)^2} = \sqrt{(4 \times 10^{-5})^2 + (1.5 \times 10^{-5})^2} = 4.27 \times 10^{-5} T$$

$$\tan \alpha = \frac{\sum \overrightarrow{B_y}}{\sum \overrightarrow{B_x}} = \frac{4 \times 10^{-5}}{1.5 \times 10^{-5}} = 2.67 \implies \alpha = 69.4^{\circ}$$

س4: هناك مجال مغناطيسي ناتج من السلك المستقيم وآخر من الحلقة الدائرية



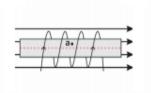
$$\overrightarrow{B_{\text{dil}}} = \frac{\mu_o I}{2\pi r} = \frac{4\pi \times 10^{-7} \times 10}{2\pi \times 5 \times 10^{-2}} = 4 \times 10^{-5} T \ (+z)$$

$$\overrightarrow{B_{\text{dil}}} = N \frac{\mu_o I}{2r} = 1 \times \frac{4\pi \times 10^{-7} \times 10}{2 \times 5 \times 10^{-2}} = 4\pi \times 10^{-5} T \ (-z)$$

$$\sum \vec{B}_c = \overrightarrow{B}_{\text{allo}} - \overrightarrow{B}_{\text{allo}} = 4\pi \times 10^{-5} - 4 \times 10^{-5} = 8.56 \times 10^{-5} T (-z)$$

س5: أولاً نحسب عدد اللفات ثم نجد المجال المغناطيسي.

$$N = \frac{\theta}{360^{\circ}} = \frac{60^{\circ}}{360^{\circ}} = \frac{1}{6} turn$$


$$\vec{B}_{R=\pi cm} = N \frac{\mu_o I}{2R} = \frac{1}{6} \times \frac{4\pi \times 10^{-7} \times 2}{2 \times \pi \times 10^{-2}} = \frac{2}{3} \times 10^{-5} T \ (-z)$$

$$\vec{B}_{R=2\pi cm} = N \frac{\mu_o I}{2R} = \frac{1}{6} \times \frac{4\pi \times 10^{-7} \times 2}{2 \times 2\pi \times 10^{-2}} = \frac{1}{3} \times 10^{-5} T \ (+z)$$

$$\sum \vec{B}_a = \frac{2}{3} \times 10^{-5} - \frac{1}{3} \times 10^{-5} = \frac{1}{3} \times 10^{-5} \, T(-z)$$

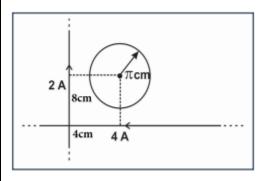
مكتبة الملتقى التربوي

:6_w

$$\vec{B} = \mu_o I \ n = \ \mu_o I \ \frac{N}{L} = \ 4\pi \times 10^{-7} \times 2 \times \frac{7}{3 \times 10^{-2}} = 5.86 \times 10^{-4} T(-x)$$

$$\sum \vec{B} = 5.86 \times 10^{-4} - 3 \times 10^{-4} = 2.86 \times 10^{-4} T (-x)$$

:7س


$$L = N \times 2\pi R \rightarrow N = \frac{50\pi}{2\pi R} = \frac{25}{R} \dots (1)$$

$$\vec{B} = N \frac{\mu_0 I}{2R} \rightarrow 2\pi \times 10^{-3} = \frac{25}{R} \times \frac{4\pi \times 10^{-7} \times 5}{2R} = \frac{5\pi \times 10^{-5}}{2R^2}$$

$$\rightarrow 2 R^2 = \frac{5\pi \times 10^{-5}}{2\pi \times 10^{-3}} = 0.025 \rightarrow R^2 = 0.0125 \rightarrow \mathbf{R} \cong \mathbf{0}. \mathbf{1} \mathbf{m}$$

$$N = \frac{25}{R} = \frac{25}{0.1} \rightarrow N = 250 \text{ turns}$$

س8: بما أن اتجاه المحصلة نحو الناظر، سيكون المجال الناتج من الحلقة معاكساً للمجال الناتج من السلكين:

$$\sum ec{B} = \ ec{B}_{}_{}$$
حلقة $- \left(ec{B}_{}_{}$ السلك العمودي $+ \ ec{B}_{}$ السلك العمودي

$$1 \times 10^{-5} = N \frac{\mu_o I_{\text{alia}}}{2R} - \left(\frac{\mu_o I}{2\pi r_{\text{ella}}} + \frac{\mu_o I}{2\pi r_{\text{ella}}}\right)$$

$$1 \times 10^{-5} = N \frac{\mu_o I_{\text{align}}}{2R} - \frac{\mu_o I}{2\pi} \left(\frac{1}{r_{\text{olign}}} + \frac{1}{r_{\text{olign}}} \right)$$

$$1\times 10^{-5} = 1\times \frac{\mu_o I_{\text{dis}}}{2\pi\times 10^{-2}} - \frac{\mu_o\times 2}{2\pi\times 10^{-2}} \left(\frac{1}{8} + \frac{1}{4}\right) = \frac{\mu_o}{2\pi\times 10^{-2}} \left(I_{\text{dis}} - \frac{3}{4}\right)$$

$$1 \times 10^{-5} = \frac{4\pi \times 10^{-7}}{2\pi \times 10^{-2}} \left(I_{\text{als}} - \frac{3}{4} \right) \to \frac{1}{2} = I_{\text{als}} - \frac{3}{4} \to I_{\text{als}} = 1.25 \text{ A}$$

مكتبة الملتقى التربوى