

حلول الوحدة الرابعة: الاحتمالات والإحصاء

تمارین ومسائل: (۱ - ۱)

س۱:

۲	١	السؤال
Í	ج	رمز الإجابة الصحيحة

تمارين ومسائل: (٤ - ٢) التوزيع الاحتمالي

س۱:

٣	۲	١	السؤال
ب	د	f	رمز الإجابة الصحيحة

س٢: أ) قيم المتغير العشوائي ٤٠ = {٠، ١، ٢، ٣}

٣	۲	1	•	w
<u> </u>	17	٦		ل(س)
77	77	77	77	

س٣: جدول التوزيع الاحتمالي:

٣	۲	١	•	س
٦	٣٠	10	٥	ل(س)
777	777	٥٦	<u> </u>	_

تمارين ومسائل: (٤ - ٣) التوقُّع

س١: التوزيع الاحتمالي:

٥	٤	٣	۲	١	•	س
۲	٤	٦	٨	١٠	٦	ل(س)
٣٦	٣٦	٣٦	٣٦	٣٦	٣٦	Ū

$$\frac{\mathfrak{ro}}{\Lambda} = (\mathcal{U})$$
 ت

س٢: نكتب التوزيع الاحتمالي كالآتي: {(-٢، ١م)، (٣، ١٠٠)، (٤، ب)} أو جدول

0
 + ب = 0 ، ت (0) = - 1 1 + $^$

$$\xi 7 = \frac{\gamma \gamma}{\circ} \times \circ \cdot = (\circ \circ)$$

توقع مجموع الإجازات خلال ٥٠ يوم عمل = ٤٦.

تمارين ومسائل: (٤ - ٤) التوزيع ذو الحدين

اس۱:

٣	۲	١	السؤال
د	<u>ب</u>	ج	رمز الإجابة الصحيحة

$$U(I) = \binom{r}{l} \left(\frac{r}{r}\right)^{r} \left(\frac{r}{r}\right)^{\circ}$$

$$\bigcup_{t} \left(\frac{Y}{Y} \right) = I - \bigcup_{t} (\cdot) = I - \frac{Y}{Y} \right)^{T}$$

$$\frac{\gamma}{m} = (\gamma - 1) = \frac{\gamma}{m} = \gamma$$
 (۱ – ۱) $\frac{\gamma}{m} = \gamma$ (۱ – ۲) $\frac{\gamma}{m} = \gamma$ (۱ – ۲) $\frac{\gamma}{m} = \gamma$ (۱) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (5) $\frac{\gamma}{m} = \gamma$ (6) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (8) $\frac{\gamma}{m} = \gamma$ (9) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (5) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (8) $\frac{\gamma}{m} = \gamma$ (9) $\frac{\gamma}{m} = \gamma$ (9) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (9) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (1) $\frac{\gamma}{m} = \gamma$ (2) $\frac{\gamma}{m} = \gamma$ (3) $\frac{\gamma}{m} = \gamma$ (4) $\frac{\gamma}{m} = \gamma$ (7) $\frac{\gamma}{m} = \gamma$ (9) $\frac{\gamma}{m} = \gamma$ (9) $\frac{\gamma}{m} = \gamma$ (1)

ب) ل (عدد يقبل القسمة على ٣ في ٥ رميات على الأقل) = ل
$$(\sqrt{\gg})$$
 ٥) = ل (0) + (0) + (0)

$$\frac{1}{\xi}$$
 (1-27) (احتمال اللون الأبيض) $(-1) = \frac{\pi}{\xi}$ (احتمال اللون الأحمر) $(-1) = \frac{\pi}{\xi}$

$$\begin{array}{c} (\log d_{2} \cup (\log) = 7 \cup (3)) \text{ eisth } \text{ is } \cup (\log) + \cup (3) = 1) \text{ early in titing } \text{ is }$$

$$\Psi, \Upsilon \circ = \frac{\Upsilon \Upsilon}{\Lambda} = \frac{\Upsilon \circ - 9 \Upsilon}{\Lambda} = \frac{7 \circ -$$

$$\xi = \frac{17}{m} = \frac{7. - VY}{m} = _{VY} = _{VY}$$
 علامة سارة المعيارية في الفيزياء: ع $_{V} = \frac{V. - V0}{Y} = _{V} = \frac{V. - V0}{Y}$ علامة سارة المعيارية في الفيزياء: ع $_{V} = \frac{V. - V0}{Y} = \frac{V. - V0}{Y}$

ات الدرات ا

• , ۲٥ =
$$\frac{1}{\xi} = \frac{7\Lambda - 79}{\xi} = \frac{7}{\xi} = \frac{7}{\xi}$$
 علامة سارة المعيارية في الأحياء:

أداء سارة في الكيمياء أفضل من الفيزياء وأفضل من الأحياء ، وأداء سارة في الفيزياء أفضل من الأحياء.

$$1 = 0$$
 = صفر $+ 1 + 1 + 0 + 0 = -0$

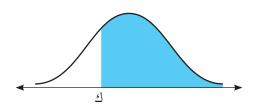
$$1 = \frac{0}{0} = \frac{V \cdot - V0}{0} = _{V0} = (1)$$

ب) الوسط الحسابي بعد التعديل =
$$- Y(\cdot V) + T = -1$$

$$1-=\frac{1\cdot -}{1\cdot}=\frac{170+120-}{1\cdot}=3=\frac{100+120-}{1\cdot}=1$$
 إذن: العلامة المعيارية للقيمة ٧٥ بعد هذا التعديل

أو مباشرة العلامة المعيارية لا تتأثر بالجمع، ولكن تتأثر بالضرب في عدد سالب. (تتغير إشارة العلامة المعيارية فقط)

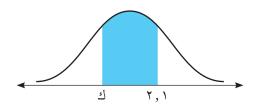
تمارين ومسائل: (٤ - ٦) التوزيع الطبيعي (المعتدل)


$$\cdot$$
 , •• ۲۱ = • , ۹۹۳٤ – ۱ = (۲, ٤٨ < 5) (ب

• ,
$$9779 = (1, 27 > 7) = (1, 27 > 7) = (1, 37 > 7)$$

·, 9870=·,··
$$\Lambda$$
9-·, 9008=(1, $V\geqslant 2\geqslant 7, TV-)$) (2

سر: أ) ك تقع في الفترة الموجبة


$$(3 \leq 2) = 9.99$$
, نبحث في الجدول عن المساحة 9.99 , النجد: ك=7, 7

$$\cdot$$
, \cdot 0 \cdot 0 = \cdot , 9897 - 1 = (\leq 1 $>$ 5)

ج) ك تقع في الفترة السالبة

 $(3 \leq 2)=1947$ ، نبحث في الجدول عن المساحة ١٩٧٧ ، لنجد ك = -٨٥٠ ،

$$U(3<1,1)-U(3<2)=7\cdot P7,\cdot$$

$$(3 < 2) = 174P$$
, $- \cdot , 797$, $- \cdot , 97$

س٣: ل(ع ﴿ك) = ١٧٣٦ , ٠ ومنها: ك = - ٩٤ , ٠

$$(\cdot\,,\,9\,\xi\,-\,>\,\xi)\,\cup\,-\,(\,1\,,\,V\,>\,\xi)\,\cup\,(\,1\,,\,V\,>\,\xi)\,)=(\,1\,,\,V\,>\,\xi\,)\,\cup\,(\,1\,,\,V\,>\,\chi\,)\,\cup\,(\,1\,,\,V\,>\,$$

$$(1-)$$
 ل (ه ه \leq س \leq ه ۷) = ل (-1) ع \leq ۳) = ل (3) ال (-1)

$$V_{\bullet}, 9VVY = \bullet, \bullet YYN - 1 = (\frac{\mu - VN}{Y} > \emptyset)$$

$$\cdot$$
 , 9 رس \leq را $<$ را

تمارين ومسائل: (٤ - ٧) التطبيقات

$$0.00$$
 الحتمال أن تقل علامات الطلبة المعيارية عن 0.00 (0.00) = 0.00 (0.00) = 0.00) العدد الكلي عدد الطلبة الذين تقل علاماتهم المعيارية عن 0.00 (0.00) العدد الكلي 0.00 = 0.00 (0.00) الباً

$$(1,0 > 0) - 1 = (1,0 < 0) = (\frac{79 - 70}{2} < 0) = (1 +$$

$$(.7,70) = (.7$$

ج) ل(س
$$<$$
 ۲۹)= $(• $> •)$ $(•) = 0$ $(• • $> •)$ $(•) = 0$ $(• • •)$ $(• • •)$ $(• • •)$ $(• • •)$ $(• • •)$ $(• • •)$ $(• • •)$ $(• • •)$$$

$$(7 > 1) \cup (10 > 1) = (7 < 10) = (4 > 1) = (4$$

عدد الأسر التي تحصل على دخل شهري أعلى من ٢٢٠ ديناراً = $... \times ... \times ... \times ... \times ...$ أسر .

$$\cdot$$
 , ۱ · · · = $\frac{1}{1}$ · · · · ($\frac{1}{1}$) ل (س

ل
$$(3 < \frac{2 - 2 \cdot 1}{1 \cdot 1}) = \frac{1 \cdot 1 \cdot 1}{1 \cdot 1} = \frac{1 \cdot 1 \cdot 1}{1 \cdot 1} = \frac{1 \cdot 1 \cdot 1}{1 \cdot 1}$$
 دیناراً

تمارين عامة الوحدة الرابعة

اس۱:

o	٤	٣	۲	١	رقم الفقرة
د	ب	د	ب	Í	رمز الإجابة الصحيحة

س٢: إذا كان جدول التوزيع الاحتمالي للمتغير العشوائي 🗸 هو:

10	١٢	٩	٨	٣	س
PY	٣ب	٠,٣	ب	P	ل (س)

$$\Upsilon, V + (\dot{} \cdot \dot{} \xi + \dot{} \Upsilon) \times V = (\upsilon)$$
 ت

$$\mathbf{V} \cdot \mathbf{V} = \mathbf{V} \cdot \mathbf{V} + \mathbf{V} \cdot \mathbf{V} \times \mathbf{V} = \mathbf{U}$$
ت

$$\frac{1}{m} = \frac{1}{V} \cdot \frac{1}{W} = \frac{1}{W} \cdot \frac{1}$$

۲	١	•	س
	<u> ٣</u>	1	() 1
٦	٦	٦	ل (س)

$$\frac{V}{\eta} = \frac{\Psi}{\eta} \times \Upsilon + \frac{\Psi}{\eta} \times \Upsilon + \frac{1}{\eta} \times \Psi = (U)$$

$$\frac{V}{\eta} = \frac{V}{\eta} \times \Upsilon + \frac{1}{\eta} \times \Psi = (U)$$

$$U = \frac{V}{\eta} \times \Psi = (U) \times \Psi = (U)$$

$$\bullet, \forall \mathsf{P} \leqslant \sqrt[n]{\frac{1}{\mathsf{P}}} \cdot \left(\frac{\mathsf{P}}{\mathsf{P}}\right) \cdot \left(\frac{\mathsf{P}}{\mathsf{P$$

$$^{\sim}$$
 . $^{\sim}$ $^{\sim}$ عندما: $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$

$$1 \vee \cdot = \mu \qquad 1 \cdot = \mu - 1 \wedge \cdot \qquad 1 \cdot \vee \cdot = \frac{\mu - 1 \wedge \cdot}{\Lambda} = e^{-1 \cdot \Lambda}$$

$$\left(\frac{17,0-7\xi}{m} > \xi > \frac{17,0-7}{m}\right) = (7\xi > 0)$$

$$= U (0, 0, 0) + 0 = 0$$

$$= U (0, 0, 0) + 0 = 0$$

$$= U (0, 0, 0) + 0 = 0$$

$$= 0, 0, 0, 0 = 0$$

$$= 0, 0, 0, 0 = 0$$

$$= 0, 0, 0, 0 = 0$$

$$\cdot$$
 ,۸٦٤٣ = ($2 > 0$) ل (س

$$V(3 < \frac{V_1 - Q}{q}) = 43 \text{ L} \cdot V,$$

$$\wedge$$
 ک $=$ ک

حلول الوحدة الخامسة: المتتاليات والمتسلسلات

تمارین ومسائل: (ه - ۱)

i)
$$\beta_{r} = -3$$
, $\beta_{y} = 11$, $\beta_{y} = 17$, $\beta_{z} = 11$

المتتالية: (- ٤ ، ١١ ، ٣٦ ، ١١)

$$Q_{1}=Q_{2}=Q_{3}$$
ب $Q_{2}=Q_{3}=Q_{4}$ ، $Q_{3}=Q_{4}$

المتتالية : (٣ ، ٣ ، ٣ ، ٣ ، ٩)

$$^{+}$$
 ص $^{+}$ حيث $^{\vee}$ $^{\vee}$ $^{\vee}$ $^{\vee}$ $^{\vee}$ $^{\vee}$ $^{\vee}$ $^{\vee}$

$$^+$$
ب) ع $= \mathbb{R}^n + 1$ حیث $\mathbb{R} \in \mathbb{R}^+$

ج)
$$\mathcal{Z}_{p} = (-7)^{p+1}$$
 حيث $Q \in \{1, 7, 7, 7, 3, 0, 7\}$

$$\mathbf{q} = \frac{\mathbf{q}}{\mathbf{q}} \times \mathbf{q} \times \mathbf{q} = (\mathbf{q} \times \mathbf{q} \times \mathbf{q}) (\mathbf{q} \times \mathbf{q} \times \mathbf{q}) = \mathbf{q} \times \mathbf{q} \times \mathbf{q}$$

$$_{r}^{\zeta} \times_{\Lambda}^{\zeta} = _{0}^{\gamma}(_{0}^{\zeta})$$
.

- سه: أ) متتالية عدد الشرائح غير المبيعة: ٩٢، ٨٣، ٢٣، ٥٠، ٣٧، ٣٣، ٨٠.
 - ب) اليوم الذي لا يحقق هذا النمط هو اليوم التاسع.

تمارين ومسائل: (٥ - ٢) المتسلسلات

$$(1) \quad V = \infty, \quad \mathcal{S}_{1} = \mathcal{S}^{7}, \quad \mathcal{S}_{2} = \mathcal{S}^{7}, \quad \mathcal{S}_{3} = \mathcal{S}^{7}, \quad \mathcal{S}_{4} = \mathcal{S}^{7}, \quad \mathcal{S}_{5} = \mathcal{S}^{7}, \quad \mathcal{S}_{7} = \mathcal{S}^{7}, \quad \mathcal{S}_{7} = \mathcal{S}^{7}, \quad \mathcal{S}^{7} = \mathcal{S}^{7}, \quad \mathcal{S}^$$

$$\frac{\gamma_{N+1}}{\gamma_{N+1}} \sum_{N=1}^{N} N = \frac{\gamma_{N+1}}{\gamma_{N+1}} \times \frac{N(N+1)}{\gamma_{N+1}} = \frac{N(N+1)(\gamma_{N+1})}{\gamma_{N+1}} = \sum_{N=1}^{N} N^{\gamma_{N+1}}$$

$$\sum_{v=1}^{q+q} \left(\frac{v}{v} - \frac{v}{v} \right) = \sum_{v=1}^{q+q} \left(\frac{v}{v} - \frac{v}{v} \right) + \left(\frac{v}{v} - \frac{v}{v} - \frac{v}{v} \right) + \left(\frac{v}{v} - \frac{v}{v} - \frac{v}{v} \right) + \left(\frac{v}{v} - \frac{v}{v} - \frac{v}{v} - \frac{v}{v} \right) + \left(\frac{v}{v} - \frac{v}{v} - \frac{v}{v} - \frac{v}{v} \right) + \left(\frac{v}{v} - \frac{v$$

(1)
$$\sum_{N=1}^{\infty} (N^{7} + YN + 0) = \frac{M(M+1)(YN+1)}{T} + YN + \frac{MN3}{T} + WN = 13$$

Lead of the second of the sec

$$(-1)^{\circ} = (-1)^{\circ} = (-1)^{\circ} = (-1)^{\circ} = (-1)^{\circ} = -1$$

$$\frac{\sum_{k=1}^{2} \frac{1}{k}}{\sum_{k=1}^{2} \frac{1}{k}} = \frac{\frac{1}{k} \frac{1}{k}}{\frac{1}{k}} = \frac{\frac{1}{k}}{\frac{1}{k}} = \frac{\frac{1}{k} \frac{1}{k}}{\frac{1}{k}} = \frac{\frac{1}{k}}{\frac{1}{k}} = \frac{\frac{1}{k}}{\frac{1}{k}$$

$$c) \sum_{i=1}^{3} \left(\frac{\sqrt{1-1}}{2} \right) = \frac{1}{2} \times \frac{3(3+1)}{2} = 13$$

$$\sum_{s=1}^{6} (x^{s} + s) = (x^{s} + s) + (x$$

ما قطعه في الدقيقة العاشرة = (۱۰ + $^{\mathsf{Y}}$ + $^{\mathsf{Y}}$) = $^{\mathsf{Y}}$ ام .

أي أنّ ما قطعه في الدقائق الخمس الأولى < ما قطعه في الدقيقة العاشرة.

تمارين ومسائل: (٥ - ٣) المتتاليات الحسابية (العددية)

(1)
4
 4

$$(\Upsilon) \dots \Upsilon = s\Lambda + \beta \qquad \Upsilon = {}_{q} \mathcal{E}$$

$$SWO + V = SN - SNE + E$$
 $\frac{E}{V} = \frac{SO + 1}{S(Y - N) + 1}$, $\frac{E}{V} = \frac{\omega}{Y - \omega}$. Simplifying the second se

$$TV = s(1+N) + 1 = 2$$

بضرب المعادلة رقم (٢) في -٤ وجمعها مع المعادله (١) ينتج أنّ:

تمارين ومسائل: (٥ - ٤) مجموع المتسلسلة الحسابية

$$Y \cdot = v \cdot W - W - YV = s \cdot W = 0$$

$$[s(1-v)+bY]\frac{v}{Y}=_{v}$$

$$. \ \Upsilon \bullet = (\ \Upsilon - \times \) \ Q + \ T \bullet) \times I \bullet =$$

$$V = (S9 + PY) = \frac{1}{4} (Y9 + PS) = 11$$

$$17\Lambda = (50 + 1.27) \frac{7}{7} = 171$$
 جـ التالية

$$\Upsilon= ^{h}$$
 (۱) نعوض في المعادلة (۱) $\Upsilon= 5$

$$\frac{\sum_{n=1}^{\gamma_{0}} (7+3n)}{\sum_{n=1}^{\gamma_{0}} (1+7n)} = \frac{(7\times\gamma_{0}) + \frac{3\times\gamma_{0}(\gamma_{0}+1)}{\gamma}}{\sum_{n=1}^{\gamma_{0}} (1+\gamma_{0})}$$

$$= \frac{\lambda_{0}^{\gamma_{0}} + \Gamma(\alpha)}{\sum_{n=1}^{\gamma_{0}} (1+\gamma_{0})} = \frac{\lambda(\alpha^{\gamma_{0}} + \gamma_{0})}{\sum_{n=1}^{\gamma_{0}} (\alpha^{\gamma_{0}} + \gamma_{0})} = \lambda$$

الملتقى التربوي

www.wepal.net

حل آخر:

البسط =
$$\sum_{N=1}^{NY} (7+3N) = \cdot 1 + 31 + 11 + \dots + (7+NN)$$
 مجموع متتالية حسابية

فيها: ١٠ = ١٠ ، ٥ = ٤ ، عدد حدودها: ٧٢

(1)
$$(N+7)NN = (NN+7+1) =$$

$$=\sum_{N=1}^{\infty}(1+7N)=7+0+V+\dots+(1+7N)=1$$
 المقام

$$(7) \dots (v+1) v = (v+1) \frac{v}{r} = (v+1+r) \frac{v}{r} = (j+r) \frac{v}{r}$$

من (۱)، (۲) ینتیج أنّ المقدار:
$$\frac{\sum_{N=1}^{\gamma} (7+3N)}{\sum_{N=1}^{N} (1+7N)} = \frac{\Lambda N(7+N)}{N(7+N)} = \Lambda$$

تمارين ومسائل: (٥ - ٥) المتتالية الهندسية

$$(7) \dots \dots \land = (\checkmark + 1)^{\gamma}$$

$$T \pm = \sqrt{\frac{1 \cdot \Lambda}{1 \cdot 1}} = \frac{\sqrt{\chi^{1}(1 + \chi)}}{\sqrt{\chi^{1}(1 + \chi)}} = \frac{\chi^{1}(1 + \chi)}{\chi^{1}(1 + \chi)}$$
 بقسمة (۲) على (۱) ينتج أنّ:

المتتالية هي : ۳، ۹، ۲۷،

المتتالية هي : -٦، ١٨، -٥٤،

$$\{(1),\dots, x_0 = (x_0 + x_0 + x_0)\}$$

$$| V + V_b | V = V + V_b + V_b + V_b | V + V_$$

من (٢)، (١) بالقسمة ينتج أنَّ:

$$Y = \mathcal{S} \cdot \frac{1}{Y} = \mathcal{S} \cdot = (Y - \mathcal{S})(Y - \mathcal{S})$$

بالتعويض في المعادلة رقم (١) ينتج أنَّ:

$$Y \cdot = \emptyset$$
 $Y \circ = \emptyset$ $Y \circ = \emptyset$

.. الأعداد هي: ۲۰،۲۰،٥

س٤: العامل الأول

الموظف الثاني

$$3_{07} = \frac{1}{2} \times \sqrt{2} = 0.00 \times (0.00) = 120 \times$$

ثانياً: بفرض أنّ (ح) هي مقدار العلاوة السنوية التي تجعل راتب العامل الأول = راتب العامل الثاني في السنه الخامسة العشرين.

$$|7177,0=\overline{s}7\xi+0\cdots|$$

تمارين ومسائل: (٥ - ٦) المتتالية الهندسية المنتهية ومجموعها

$$1-40=1-5$$
 15 = $40-5$ 40 $=\frac{1-5}{1-5}$ = 40 $=\frac{1-5}{1-5}$ = 50 $=\frac{1-5}{1-5}$ $=\frac{1-5}{1-5}$

$$0 = 1 \leftarrow 1017 \cdot = 1 - 1010 \leftarrow 900 = \frac{1 - 0 \times 9000}{1 - 0} \leftarrow \frac{1 - 0 \times 9000}{1 - 0} = \frac{1 - 0 \times$$

$$1\%, \circ \approx \frac{\circ 9 \cdot \xi \wedge \times^{\vee - \psi}}{7} = \frac{(1 - 1) \cdot \psi}{1 - \psi} = \frac{(1 - 1) \cdot \psi}{1 - \psi} = \frac{1 - \psi}{1 - \psi} = \frac{1 - \psi}{1 - \psi}$$

$$(1) \dots \dots 1 \cdot = (^{7} \checkmark + 1) \checkmark \uparrow \checkmark = 0 = \frac{^{7} \checkmark \uparrow + \checkmark \uparrow}{7} \therefore \vdots$$

$$\mathcal{S} = \mathbf{Y} + \mathbf{Y} \mathbf{Y} \quad \stackrel{\mathbf{0}}{\longleftarrow} = \frac{\mathbf{Y} \cdot \mathbf{Y} + \mathbf{Y}}{\mathbf{Y}} = \frac{\mathbf{0}}{\mathbf{Y}} = \frac{\mathbf{0}}{\mathbf{Y}} = \frac{\mathbf{0}}{\mathbf{Y}} = \mathbf{0}$$

المتسلسلة هي: ١٦ + ٨ + ٤ +

$$\frac{\lambda}{1 \cdot \lambda \lambda} = \frac{1 - \frac{\lambda}{1}}{(1 - \frac{\lambda}{1}) \cdot 1} = \frac{1 - \lambda}{(1 - \frac{\lambda}{1}) \cdot 1} = \frac{1 - \lambda}{1 \cdot \lambda} = \frac{\lambda}{1 \cdot \lambda}$$

$$1 = 1$$
 التعويض في المعادلة رقم (٢) ينتج أنّ: $1 = 1$

$$1.1 = \frac{1-\lambda}{(1-1)(\lambda)(\lambda)} = \frac{1-\lambda}{(1-1)(\lambda)} = \frac{1-\lambda}{\lambda}$$

ارتفاع الكرة بعد الصدمة السادسة:
$$\frac{9}{7} = \frac{9}{7} \times \frac{9}{7} = \frac{9}{7} \times \frac{9}{7}$$
.

$$\frac{\Lambda 1}{\pi r}$$
 ، $\frac{7V}{\Lambda}$ ، $\frac{9}{7}$ ، 7 ، 7 ، 7 ، 7 ، 7 ، 7 ، 7

$$V = \frac{V \cdot V}{\frac{\xi}{2}} =$$

 $\frac{1}{m} = \sqrt{\Lambda}, 1 = 1$ متسلسلة التأرجح هي : ۲,۷، ۸,۱ ، ۹، ۲,۷، ۹، ۳، ۰,۳، متسلسلة هندسية

$$-\frac{1}{4}$$
 جد $=\frac{(1-\frac{0}{4}(\frac{1}{4}))\lambda, 1}{1-\frac{1}{4}}$ جد $=\frac{1}{4}$

تمارين عامة الوحدة الخامسة

س۱:

١.	٩	٨	٧	٦	٥	٤	٣	۲	١	رقم الفقرة
ج	ج	ب	د	Í	ب	f	ج	ب	ب	رمز الإجابة الصحيحة

س۲: ا = ۳، ل = ۲۰۵۱ ، جـ = ۳۰۶۹

$$-1041 = 1001 =$$

 $\Lambda = \lambda$, $\Upsilon = \Sigma$, $\Upsilon = \lambda$, $\Lambda = \lambda$

$$\frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3$$

سه: ب وسط حسابي بين أ، ج . . أ، ب، ج في توالٍ حسابي

$$\xi = \frac{s\xi}{s} = \frac{s0+p\pi}{s} + \frac{s+p\pi}{s} = \frac{3\xi+p\gamma+s+p}{s} + \frac{p\gamma+s+p}{s} + \frac{p\gamma+s+p}{s} = \frac{s\xi}{s} = \frac{s}{s} = \frac{s}{s} + \frac{s$$

$$1187 = (171 + 11) \frac{17}{7} + (01 + 7) \frac{17}{7} =$$

بقسمة (۱) علی (۲) ینتج أنّ:
$$\frac{\sqrt{(\sqrt{7}-1)}}{\sqrt{\sqrt{7}}} = \frac{\sqrt{2}}{\sqrt{7}} \longrightarrow \frac{\sqrt{7}-1}{\sqrt{7}} = \frac{\sqrt{7}-1}{\sqrt{7}} \longrightarrow \sqrt{7}-7 = \sqrt{7}$$

$$\frac{1}{\sqrt{7}} - \sqrt{7} - \sqrt{7} - \sqrt{7} = \frac{1}{\sqrt{7}} \longrightarrow \sqrt{7} - \sqrt{7} = \sqrt{7} - \sqrt{7} = \sqrt{7} - \sqrt{7} = \sqrt{7} - \sqrt{7} = \sqrt{7} = \sqrt{7} - \sqrt{7} = \sqrt{7}$$

أولاً : عندما
$$v = Y$$
 بالتعويض في المعادلة (١) ينتج أنّ : $A = V = V$

ثانياً: عندما:
$$\sqrt{-} = -\frac{1}{\sqrt{-}}$$
 بالتعويض في المعادلة (١) ينتج أنّ:

$$(1 \times (-\frac{1}{7})^7 = 50)$$

$$(1-r) = (1+r) (1-r) \iff (1-r) = (1-r) \implies (1-r) = (1-r) \implies (1-r) = (1-r)$$

$$\frac{1}{\Lambda} = \emptyset$$
 $= \emptyset$ $= \emptyset$ $= \emptyset$ $= \emptyset$

$$\frac{1}{1}$$
 المتتالية هي: $\frac{1}{1}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$ ،

$$\frac{\xi}{2} = \sqrt{2}$$
 ، ۵۰ ، ۶۰ ، ۳۲، متتالیة هندسیة $\frac{\xi}{2} = \sqrt{2}$ ، ۳۲، ۳۲،

حلول الوحدة السادسة: القطوع المخروطية

تمارين ومسائل: (١ - ١) القطع المكافئ

س١: أ) $ص^{2} = -3$ س هذا قطع مكافئ مفتوح لليسار ، فيه: -8 = -8 ، 1 = 1 ، إحداثيات الرأس (٠،٠)، البؤرة (-1،٠)، معادلة الدليل س = 1 ، معادلة محور التماثل ص = ٠ (محور السينات).

ب) س $^{\prime}$ = $^{\prime}$ ص هذا قطع مكافئ مفتوح للأسفل ، فيه: $^{\prime}$ = $^{\prime}$ ، $^{\prime}$ = $^{\prime}$ ، $^{\prime}$ إحداثيات الرأس ($^{\prime}$ ، $^{\prime}$) ، البؤرة ($^{\prime}$ ، $^{\prime}$) ، معادلة الديل ص = $^{\prime}$ ، معادلة محور التماثل س = $^{\prime}$ (محور الصادات).

س۳: معادلة هذا القطع المكافئ هي: $ص^7 = 34$ س، إحداثيات البؤرة $(4, \cdot)$ ف $^7 = (\omega_1 - 4)^7 + (7 - \cdot)^7 = \cdot \cdot \cdot \cdot \cdot$ إذن: $(\omega_1 - 4)^7 = 37$ ، $(\omega_1 - 4) = \pm \Lambda$ $\omega_2 = 4 \pm \Lambda$ لكن: $(7)^7 = 34$ $\omega_3 = 4 \pm \Lambda$ لكن: $(7)^7 = 34$ $\omega_4 = 7$ إما: 77 = 34 $(7 + \Lambda)$ ومنها: $77 + \Lambda = 1$ $(7 + \Lambda)$ ومنها: $77 + \Lambda = 1$ $(7 + \Lambda)$ ومنها: 77 + 1 $(7 + \Lambda)$ ومنها: 77 + 1 (7 + 1) (7

سرع: منحنى القطع المكافئ يمر بالنقطة (٢، ٨) وهي في الربع الأول وهناك احتمالان: مفتوح لأعلى ، مفتوح جهة اليمين اولاً: مفتوح لأعلى 7 مفتوح به اليمين 7 مفتوح جهة اليمين مفتوح حمة اليمين مفتو

(1)
$$\omega = \frac{\xi}{dl'(\Upsilon a) + 1} = \frac{\xi}{dl'(\Upsilon a)} = \xi + \pi l'(\Upsilon a)$$

$$ص=1-7$$
 جا ه = جتا (۱ه) بالتربيع \longrightarrow $ص = -7$ جتا (۱ه) من (۱) ، (۲) ينتج أن $\frac{1}{2}$ س \longrightarrow $ص = 3$ ص \longrightarrow $ص = 3$ ص

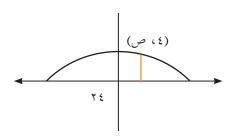
تمارين ومسائل: (٦ - ٢) القطع الناقص

س۱:

٣	۲	١	رقم الفقرة
ب	Í	ج	رمز الإجابة الصحيحة

ستني، فيه:
$$\frac{0}{\sqrt{1}} + \frac{0}{\sqrt{1}} + \frac{1}{\sqrt{1}} = 1$$
 ، إذن: هذا قطع ناقص سيني، فيه: $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$A = \frac{1}{\gamma}, \psi = \frac{1}{\gamma}, \varphi = \frac{\sqrt{6}}{\gamma}$$


$$(\pm \sqrt{\frac{1}{1}})$$
 إحداثيات الرأسين $(\pm \frac{1}{1})$ ،)، إحداثيات البؤرتين (

طول المحور الأكبر =
$$\Upsilon$$
 = 1 ، طول المحور الأصغر = Υ ب = $\frac{\Upsilon}{w}$

البعد بين الرأس البعيد والبؤرة =
$$4 + - = \Lambda$$

معادلة القطع الناقص الصادي:
$$\frac{0}{17} + \frac{0}{17}$$

س٤: المحل الهندسي هو قطع ناقص سيني، في: ٢ أ = ١٢ ومنها: أ = ٦، البؤرتان (\pm ٥، ٠) ، ومنها: \pm = ٥، إذن: \pm 1 المحل الهندسي هو قطع فاقص سيني، في: \pm 1 المحل البؤرتان (\pm ٥، ٠) ، ومنها: \pm 1 المحل الهندسي هو قطع فاقص سيني، في: \pm 1 المحل المحل البؤرتان (\pm ٥، ٠) ، ومنها: \pm 1 المحل المحل

سه: المحور الأكبر أفقي → قطع ناقص سيني

 $^{"}$ أعلى نقطة تبعد ٦ م \longrightarrow ب

معادلة القطع الناقص السيني:
$$\frac{w}{w_1} + \frac{w}{w_2} = 1$$

عندما:
$$m=3$$
 \longrightarrow $m=4$ \longrightarrow $m=4$

تمارين ومسائل: (٦ - ٣) القطع الزائد

س۱: أ)
$$9 m^7 - m^7 = 7 ومنها: $\frac{m^7}{8} - \frac{m^7}{7} = 1 وهذا قطع زائد سيني فيه:$$$

$$A = Y$$
، $\psi = F$ ، ج $= \sqrt{2}$ ، البؤرتان ($\pm \sqrt{2}$ ، ۰) ،

الرأسان (
$$\pm Y$$
، •) ، طول المحور القاطع = $\Delta Y = 3$ ، طول المحور المرافق = $\Delta Y = 1$

ب)
$$\Gamma ص^{7} - \Upsilon m^{7} = \Upsilon$$
 ومنها: $\frac{\sigma^{7}}{7} - \frac{m^{7}}{7} = 1$ ، وهذا قطع زائد صادي فيه: $1 = \frac{1}{\sqrt{7}}$ ، $1 = \frac{1}{\sqrt{7}}$.

الرأسان: (٠،
$$\pm \frac{7}{\sqrt{7}}$$
)، البؤرتان: (٠، $\pm \sqrt{7}$) طول المحور القاطع = $\frac{7}{\sqrt{7}} = \sqrt{7}$ وحدة طول ، طول المحور المرافق = $\frac{7}{\sqrt{7}} = \sqrt{7}$ وحدة طول ، الاختلاف المركزي = $\frac{8}{7} = \frac{7}{\sqrt{7}} = 7$

س۲: النقطة
$$(\frac{\sqrt{4}}{7})^{0}$$
, ۲) تقع على منحنى القطع الزائد، الفرق المطلق بين النقطة والبؤرتين يعني: ۱۲ $\sqrt{4}$ $\sqrt{4}$

ست: بؤرة القطع المكافئ س
$$^{-1}$$
 ص، هي $(•, •)$ إذن: القطع الزائد صادي فيه $+ = •$

$$\mathbf{a} = \frac{\mathbf{x}}{q} = \frac{0}{m}$$
 اذن $\frac{0}{q} = \frac{0}{m}$, ومنها: $q = m$, $q = 3$ معادلة القطع الناقص هي: $\frac{0}{q} = \frac{0}{m}$

سه:
$$\frac{m^{7}}{b} - \frac{m^{7}}{b} = 1$$
, حيث إن: $3 > b > 0$ فإن: $3 - b > 0$? ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ ولذلك قطع زائد سيني $3 - b > 0$ فإن: $3 - b > 0$ فإن: $3 - b > 0$ فإن: $3 - b > 0$ فإن أن المنابع والمنابع والمنابع

تمارين عامة الوحدة السادسة

:١,,

٥	٤	٣	۲	١	رقم الفقرة	
د	Í	Í	د	ب	رمز الإجابة الصحيحة	

$$\frac{m^{2}}{m^{2}} = \frac{m}{m} - \frac{m}{m} = 1$$

$$\frac{m}{m} = \frac{m}{m} = 1$$

$$\frac{m}{m} = \frac{m}{m} = 1$$

$$\frac{m}{m} = \frac{m}{m} = 1$$

 $(" \pm ") + " = "$ ومنها جـ = " ، البؤرتان هما: (• ، $\pm "$)

$$(7 \cdot 1)$$
 هذا قطع زائد صادي معادلته: $\frac{0}{\sqrt{7}} - \frac{1}{\sqrt{7}} = 1$ يمر منحناه بالنقطتين: (۱، ۲۰)، (۱، -۳)

بتعويض النقطة الأولى ينتج: ٣٦ب ٦-١١١٦ = ٢٢ب(١)

7
 ان: 7 ان: 7 ان: 7 ان: 7 ان: 7 ان: 7

$$m^{2}$$
: $m = 7 N^{7}$, $m = 7 N$, eatisf $m^{7} = 77 N^{7}$
 $m^{2} = 77 \times \frac{1}{7} + m \longrightarrow m^{7} = 11 M$

معادلة القطع المكافئ مفتوح لليمين بؤرته ($\frac{9}{7}$ ، ،)

سه: س ٔ = - ٤ أ ص من هندسة الشكل (٤ ، - ٣) تقع على المنحنى
$$- \frac{17}{\pi} = - \frac{5}{4} \times - \frac{5}{4} = \frac{17}{4} \times - \frac{17}{4} = \frac{17}{4} =$$

حلول الوحدة السابعة: النهايات والاتصال

تمارين ومسائل: (٧ - ١) نهاية الإقتران عند نقطة

$$\text{ ``m} = \text{ ``m} - \text{ ``m}) = \text{ ``m} \cdot \text{ ``m} = \text{ ``m} = \text{ ``m} = \text{ ``m} \cdot \text{ ``m} = \text$$

نها σ (س) = ۲ ، نها σ (س) = ۱ ولذلك نها σ (س) غير موجودة. (وضح بالرسم) منه σ

$$mo: \frac{1}{m} + m = 1$$
 (eضح بالرسم)

تمارين ومسائل: (٧ - ٢) نظريات النهايات

$$1 - = \frac{Y - X \cdot 1}{1 \times Y} = \frac{(w)}{1 + (w)} = \frac{(w)}{1 + (w)} = \frac{Y - X \cdot 1}{1 + (w)} = \frac{(w)}{1 \times Y} = \frac{(w$$

$$(\mathbf{U}) \overset{\circ}{\mapsto} \mathbf{V} \overset{\circ}{\mapsto$$

$$Y = \frac{2\sqrt{\sqrt{\gamma + \gamma - \gamma}}}{\sqrt{\gamma - \gamma - \gamma}} = \frac{\sqrt{\gamma + \gamma - \gamma}}{\sqrt{\gamma - \gamma - \gamma}} = Y$$

$$= \begin{array}{ccc} & & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ \end{array} \right\} = \left[\begin{array}{ccc} 1 + \omega \frac{1}{\psi} \\ = \left[\begin{array}{ccc} 1 + \omega \frac{1}{\psi} \end{array}\right] = (\omega) \mathcal{O} \end{array}$$

 $\dot{\mathbf{r}}_{\rightarrow -} = (\mathbf{r}_{\mathbf{r}}) \mathbf{v}_{\mathbf{r}}$

أ)
$$\frac{1}{v_{-1}} U(w) = 0$$
 (لاحظ النهاية اليمنى = النهاية اليسرى عند نقطة التحول $w = 7$) $\frac{1}{v_{-1}} U(w) + w^{7} = 0$ (لاحظ النهاية اليمنى = النهاية اليسرى عند نقطة التحول $w = -7$).

س۲: النهاية موجودة عند س
$$\rightarrow$$
 ۲ ؛ ولذلك: $نها قراس) = نها قراس)$

$$\frac{1}{V} + V = 3 + V + 1$$
 ومنها: $1 = \frac{1}{V}$

 $2 = (\mathcal{T} + \mathcal{T} - \mathcal{T} + \mathcal{T}) = \frac{1}{2}$

تمارين ومسائل: (٧ - ٣) النهايات والصور غير المعينة

$$\frac{1}{Y} = \frac{w}{(W-Y)} = \frac{W(W+Y)}{(W-Y)} = \frac{W(W+$$

$$\Psi - = \frac{(0 - \omega)(w - 0)}{(\omega - 0)} \quad \psi$$

$$\Rightarrow \frac{\mathbf{m}(\mathbf{m} - \mathbf{m})(\mathbf{m} - \mathbf{m})}{\mathbf{m}} \underbrace{\mathbf{m}(\mathbf{m} - \mathbf{m})}_{\mathbf{m} \rightarrow \mathbf{m}}$$

$$\Lambda = \xi + \xi = \frac{(\xi + \xi)(\omega^{2} + \xi)(\omega^{2} + \xi)}{(\omega^{2} + \xi)(\omega^{2} + \xi)} = \frac{17 - \chi}{(\omega^{2} + \xi)}$$

$$(a) \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \times \frac{1 \cdot \sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{$$

$$\underline{\omega}_{Y-Y} = \underbrace{\omega}_{W-Y+1} U(w) = \underbrace{\omega}_{W-Y+1} U(w)$$
? $\underline{\psi}_{Y} = \underbrace{\psi}_{W-Y+1} U(w)$

عندما: س ← ٢ المقام = صفر؛ ولذلك حتى تكون النهاية موجودة عندما: س ← ٢ فإنّ البسط = صفر .

$$0 = \frac{1 - (7 - 7) - 7) - 7}{(1 - 7)}$$

$$1 - \frac{1}{\sqrt{(m-1)(m-1)}} = 0$$
 ومنها: $1 + 7 = 0$ ومنها: $1 = 1$ ، $y = -1$

تمارين ومسائل: (٧ - ٤) نهايات الاقترانات الدائرية

$$\frac{q}{\epsilon q} = \frac{q}{(m)} + \frac{q}$$

$${}^{\mathsf{T}}\pi = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}}{\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}}{\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}}{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}}{\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}} = \frac{\mathsf{m}\pi\,\mathsf{T}\,\mathsf{m}} = \frac{\mathsf{m}\pi$$

$$\bullet = \frac{0}{m} \times \bullet = \frac{1}{m} \times \frac{1}{m$$

$$=\frac{\left(\frac{\sqrt{\gamma}}{\gamma}\sqrt{\gamma}-1\right)-\left(\frac{\sqrt{\gamma}}{\gamma}\sqrt{\gamma}-1\right)}{\sqrt{\gamma}}\left(\frac{\sqrt{\gamma}}{\gamma}\sqrt{\gamma}-1\right)}{\sqrt{\gamma}}\left(\frac{\sqrt{\gamma}}{\gamma}\sqrt{\gamma}-1\right)=\frac{\sqrt{\gamma}\sqrt{\gamma}}{\sqrt{\gamma}}\left(\frac{\sqrt{\gamma}}{\gamma}\sqrt{\gamma}-1\right)}{\sqrt{\gamma}}\left(\frac{\sqrt{\gamma}}{\gamma}\sqrt{\gamma}-1\right)$$

$$\frac{\Lambda}{\xi q} = \frac{\frac{q}{\xi} + \frac{1}{\xi}}{\frac{\xi q}{\xi}} = \frac{\frac{\sqrt{m}}{\gamma} + \sqrt{m}}{\gamma} + \frac{\sqrt{m}}{\gamma} + \frac{\sqrt{m}}{\gamma} + \frac{\sqrt{m}}{\gamma} = \frac{1}{\xi}$$

$$\frac{1 - x \sin^{2} w}{\sin^{2} w} \times \frac{1 + x \sin^{2} w}{1 + x \sin^{2} w} = \frac{1 - x \sin^{2} w}{(w - x \sin^{2} w)} \times \frac{$$

$$=\frac{1}{\gamma} = \frac{1}{(1+\epsilon i)} \times \frac{1}{\epsilon i} \times \frac{1}{\epsilon i} \times \frac{1}{\epsilon i} = \frac{1}{\epsilon i}$$

$$\frac{|\omega|}{\omega} = \frac{\sqrt{|\omega|^{2}}}{|\omega|} = \frac{1}{|\omega|}$$

 $\frac{1}{1} - \frac{1}{1} - \frac{1}{1} = -1$ $\frac{1}{1} \cdot \frac{1}{1} \cdot \frac{1}{$

 $\frac{1}{1}$ $\frac{1}$

قيمة البسط عندما س → • يساوي صفراً ، ولكي تكون النهاية موجودة قيمة المقام عندما س → • تساوي صفراً ا- جتا • = • أي ا - ١ = • ومنها: ا = ١

$$\frac{q}{m \rightarrow 1} = \frac{1 - \sqrt{1 - \frac{1}{1 - \frac{$$

ومنها: $Y \times \frac{y^{2}}{2} = \frac{9}{7}$ ومنها: $y = \pm \infty$

$$\frac{9}{100} = \frac{1}{100} \times \frac{1}$$

ومنها:
$$\frac{y}{Y} = \frac{q}{Y}$$
 ومنها: $y = \pm m$

 ∞ \pm \leftarrow تمارين ومسائل: (۷ - ۵) نهاية الإقتران عند س

$$\frac{\left(\frac{10}{r_{\text{m}}} + \frac{r_{\text{m}}}{r_{\text{m}}} + \frac{0}{r_{\text{m}}} + 1\right)^{r_{\text{m}}}}{\left(\frac{q}{r_{\text{m}}} + \frac{10}{r_{\text{m}}} + 1\right)^{r_{\text{m}}}} \underbrace{\left(\frac{10}{r_{\text{m}}} + \frac{10}{r_{\text{m}}} +$$

$$\bullet = \frac{1}{9} \times \frac{1}{0} = \frac{1}{0} = \frac{1}{0}$$

$$= \frac{1}{1 - \frac{1}{1$$

$$\infty = 1 \times \omega = \left(\frac{\left(\frac{m}{\omega} - 1\right)^{m}}{\left(\frac{m}{\omega} - 1\right)^{m}}\right) = \omega + \omega = 0$$

$$\frac{1}{7 \cdot \xi m} = {}^{\circ} \left(\frac{1}{m}\right) = \dots = {}^{\circ} \left(\frac{1}{m - 2}\right) = {}^$$

$$1 - = \frac{1 - m^{2} + m^{2} + m^{2} + m + m + m}{p + m + m}$$

النهاية موجودة ومعلومة القيمة، ودرجة المقام = Y ؛ ولذلك ستكون درجة البسط = Y ويتحقق عندما: (1 - Y) = Y ، ومنها: (1 - Y) = Y

$$m \to \infty$$
 $m \to \infty$ $m \to \infty$

تمارين ومسائل: (٧ - ٦) الاتصال

$$Y = \omega$$
 are a number of $T = 0$ and $T =$

لأنَّ ما في داخل القيمة المطلقة كثير حدود متصل عند س = ٢، ومجموع اقترانين متصلين.

أو إعادة التعريف للقيمة المطلقة فيكون متصلاً عند س = ٢

 υ (-۸, ۰)= -۱, ۰ ، نهما υ (س)، غیر موجودة إذن: υ (س) غیر متصل عند س = -۸, ۰ ، منهما عند س = -۸, ۰

ج)
$$\upsilon(m) = d \cdot (\pi \pi) - \pi \cdot (\pi \pi)$$
 متصل عند س $= \frac{1}{2}$ لتحقق شروط الاتصال.

$$U(m) = (m) = (m)$$

$$\frac{17-1+00}{(w-1)} = \frac{(\xi+1+00)}{(w-1)} \times \frac{(\xi-1+00)}{(w-1)} \times \frac{(\xi-1+00)}{(w-1)} = \frac{(\xi+1+00)}{(w-1)} \times \frac{(\xi-1+00)}{(w-1)} = \frac{(\xi+1+00)}{(w-1)} = \frac{(\xi+1+0$$

$$U(\Upsilon) = \Upsilon$$
 ومنها: $U(W)$ غير متصل عند $W = \Upsilon$ ؛ لأنّ: $U(\Upsilon) \neq \varphi$

$$(w) = [1 - \frac{w}{\pi}]$$
 ، $w \in [-7, 0]$

v(m) متصل على الفترات] -7، 0 ،]0، 0 ، 0 .

 σ - من خلال بحث شروط الاتصال σ (س) منفصل عند س σ - ۳. يمين س

ں(س) متصل علی]-۳، ٥] - { ۰، ٣}

U(m) متصل على مجاله $\longrightarrow U(m)$ متصل عند نقاط التحول، وهي: m=1، m=2

$$U(1) = i_{0} \cup U(m) = i_{0} \cup U(m) \quad \text{easy} \quad \text{for } 1 = 1$$

$$U(m) = i_{0} \cup U(m) = i_{0} \cup U(m) \quad \text{easy} \quad \text{for } 1 = 1$$

$$U(m) = i_{0} \cup U(m) = i_{0} \cup U(m) \quad \text{for } 1 = 1$$

سه: أ) $\upsilon(m)$ منفصل عند m = -1، ۱.

 $\forall u(m)$ $\forall u \in [-1, -1]$ من الرسم متصل وكذلك متصل من الجهتين: اليمنى واليسرى.

ج)
$$\upsilon(m)$$
 غير متصل على الفترة $[-1,\infty[$ ؛ لأنه غير متصل عند $m=-1,1$.

c)
$$\upsilon$$
(س) متصل \forall س ∈] $-\infty$, $-\mathsf{Y}$]؛ لتحقق شروط الاتصال من الرسم.

ھے)
$$\upsilon(m)$$
 غیر متصل علی مجالہ $\longrightarrow \upsilon(m)$ متصل $\forall m \in \Im - \{-1, 1\}$

تمارین ومسائل: (۷ - ۷) بلزانو

س۱: تتحقق شروط بلزانو على الفترتين، [$-\pi$ ، -1]، [3، 0] يمكن الجزم بوجود صفري اقتران ولكن $\upsilon(•) = •$ إذن: يوجد صفر ثالث \longrightarrow أقل عدد من الأصفار يمكن التحقق من وجودها π .

س۲: $U(m) = m^7 - 7m^7 + 7$ متصل على الفترة [-۲ ، ۶] ؛ لأنه اقتران كثير حدود.

$$\cdot > (\xi) \cup \times (\Upsilon -) \cup$$

تتحقق شروط بلزانو، يوجد على الأقل جـ ∈] - ۲ ، ٤[بحيث: ٤٠(جـ) = ٠

$$\cdot$$
 التقریب الأول جر $_{1}=\frac{2+2}{2}=1$ ، υ (۱) التقریب الأول جر

بالمثل تنطبق بلزانو على الفترة [- ٢ ، ١]

$$\cdot < (\frac{1}{Y} -)$$
، $\frac{1}{Y} - = \frac{1+Y-}{Y} = \frac{1+Y-}{Y} = \frac{1+Y-}{Y}$ التقریب الثاني جـ

$$u = (-2)$$
 يوجد على الأقل ج $= [-7, -\frac{1}{7}]$ بحيث $u(-2) = 0$

$$1,70-=\frac{\cdot,0-+7-}{7}=-7$$
 التقریب الثاني جـ

٠٠(س) متصل على [١ ، ٢[، وكذلك على الفترة] ٢ ، ٥] كثيرات حدود.

عند س = ۲ تتحقق شروط الاتصال
$$\upsilon(\Upsilon)$$
 = نهيا $\upsilon(m)$ = نهيا $\upsilon(m)$ = ٤ متصل عند ι = ι عند ι = ι

ومنها: υ (س) متصل على الفترة [۲ ، ٥]

$$\upsilon(1) imes \upsilon(0) < \cdot$$
 تتحقق شروط نظرية بلزانو

$$oldsymbol{\cdot} = (-1)$$
يوجد على الأقل: جـ $oldsymbol{\cdot} \in (-1)$ ، ٥ بحيث $oldsymbol{\upsilon}$

$$\begin{vmatrix}
7 > -> \ge 1 & & & & & & \\
7 > -> \ge 1 & & & & & \\
0 \ge -> \ge 7 & & & & & \\
0 \ge -> \ge 7 & & & & & \\
0 \ge -> \ge 7 & & & & \\
0 \ge -> \ge 7 & & & & \\
0 \ge -> \ge 7 & & & & \\
0 \ge -> \ge 7 & & & & \\
0 \ge -> \ge 7 & & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & \\
0 \ge -> \ge 7 & & & \\
0 \ge -> \ge 7 & & \\
0 \ge 7 & & \\
0 \ge 7 & & \\
0 \ge 7 & & \\$$

جـ = - ۲ مرفوض لا ينتمي إلى الفترة] ۱ ، ۲ [جـ ٔ = - ۲
$$\sqrt{\Upsilon}$$
 \in] ۲ ، ٥ [. جـ ٔ = Λ ومنها: جـ = ۲ $\sqrt{\Upsilon}$ \in] ۲ ، ٥ [.

$$[-1, \infty]$$
 نفرض له $(m) = \mathcal{U}(m) = m^{2} + m^{2} - m^{2} - m = m^{2}$

يوجد على الأقل: جـ
$$\in$$
] - ۱ ، π [بحيث ك (جـ) = • أي ك (جـ) = υ (جـ) – 1π = • يوجد على الأقل: جـ \in] - ۱ ، π [بحيث: υ (جـ) = 1π

سه: نبحث تحقق الشروط على الاقتران
$$\mathbf{a}(m) = (m^7 - 0) \mathbf{v}(m)$$

هـ(١) =
$$-3 \times \mathcal{O}(1)$$
 لأن $\mathcal{O}(1)$ موجبة ؛ لأنها تقع في الربع الأول.

هـ(۷) = ٤٤ ×
$$\upsilon$$
 (۷) و بانها تقع في الربع الأول. $(v) \sim v \times v \times v$

$$a(1) \times a(1) < \cdot$$

التقریب الأول: جـ, =
$$\frac{V + V}{Y}$$
 = ٤

ه(٤) = ۱۱
$$\times \mathcal{U}(8)$$
 تتحقق شروط بلزانو.

$$\Upsilon$$
, $\circ = \frac{\xi + 1}{\Upsilon} = \varphi - \frac{\xi + 1}{\Upsilon}$ التقریب الثاني: ج

$$(```, ```) > ^ + المثل تتحقق بلزانو على الفترة [```, ```) المثل تتحقق المثل الفترة [```, ```)$$

تمارين عامة الوحدة السابعة

													(: 1 <i>m</i>
١٣	١٢	11	١.	٩	٨	٧	٦	٥	٤	٣	۲	١	الفقرة
ج	ب	ج	ج	ج	Í	د	Í	ب	ج	ج	Í	د	رمز الإجابة الصحيحة

$$w = \mathcal{U}(m)$$
 متصل على $\longrightarrow 3$ متصل عند $m = \mathcal{V}$

$$U(T) = \frac{1}{2} U(m) = V(m) = V(m)$$

$$11 = \frac{m^{2} - (m - 7 + 1)m - 7 + 1}{m - m}$$

$$11 = \frac{(m-m)(m+\gamma)}{m-m}$$

$$\xi = 10$$
 ، $\xi = 10$ ، $\xi = 10$

$$Y-=\frac{Y(1+Y)}{(w+Y)}$$

$$=\frac{Y(1+Y)}{(w+Y)}$$

$$\mathsf{Y} = \frac{\mathsf{Y}(\mathsf{1} + \mathsf{Y})}{\mathsf{Y}(\mathsf{1} + \mathsf{Y})} \longrightarrow \frac{\mathsf{Y}(\mathsf{1} + \mathsf{Y})}{\mathsf{Y}(\mathsf{1} + \mathsf{Y})} \longrightarrow \mathsf{Y}(\mathsf{1} + \mathsf{Y})$$

$$Y - = \frac{1 + 1 + 1 + 1 + 1}{1 + 1 + 1} = -Y$$

$$\frac{1}{1 + 1 + 1} = -Y$$

$$\frac{1}{1 + 1 + 1} = -Y$$

$$(m) = \mathcal{O}(m) - \mathbf{a}$$
 (س) نفرض له (س)

$$v(m)$$
 ، $v(m)$ کثیرا حدود ، إذن: متصلان على الفترة $v(m)$

$$\mathcal{L}(m) = \mathcal{U}(m) - \mathbf{a}(m)$$
، لأنه ناتج طرح اقترانين متصلين.

$$\omega \circ :$$
 نفرض: $\mathcal{O}(\omega) = \omega^{\pi} - V$

$$7>\sqrt{\sqrt{r}}>1$$
 ختار الفترة [۲ ، ۲] لأن $1<\sqrt{r}<\sqrt{\sqrt{r}}>\sqrt{\sqrt{r}}<\sqrt{r}<\sqrt{r}$

· ن(س) متصل على الفترة [١ ، ٢]؛ لأنه كثير حدود .

$$\cdot > (1) \cup \times (1) \cup$$

تتحقق شروط نظریة بلزانو إذن: یوجد علی الأقل جے \in] ۲ ، ۲ [بحیث: $\upsilon(ج) = \cdot$

التقریب الأول = جر =
$$\frac{7+1}{7}$$
 = 0, ۱

 $\cdot > (1,0)$

نطبق بلزانو على الفترة [٥ , ١ ، ٢] تتحقق الشروط

 $oldsymbol{arphi}$ تتحقق شروط نظریة بلزانو إذن: یوجد علی الأقل جـ $oldsymbol{arphi}$ ، ۲ [بحیث: $oldsymbol{arphi}$ (جـ) = •

 $1, vo = \frac{r+1, o}{r} = ج- e$ التقریب الثاني = - e

ن(۱,۷٥) <

نطبق بلزانو على الفترة [٧٥ ، ١ ، ٢] تتحقق الشروط.

تتحقق شروط نظرية بلزانو إذن: يوجد على الأقل جـ ∈] ٢،١,٧٥ [بحيث: ١(جـ) = •

 $1, \Lambda V = \frac{\Upsilon + 1, V = -}{\Upsilon} = \frac{\Upsilon + 1, V}{\Upsilon}$ التقریب الثالث