

عوض الواوي محمد الفــرا رنـــــازيــــادة

صلاح البتان سامــی بــدر عدنان شعت کمـال شلبـی نبيل سلمن بلال الكخن نعيم ابو غلوة زيـــاد عمــــرو

اعداد

أ.بلال ابو غلوة أ.الاء فايز الجزار خان يونس/ ٩٩٨٠٩٦٢٨ شمال غزة / ٩٩٨٣٣٧٨٨ غزة/ ١٧١٠،٩٧٨٠٠٠

أ.سليم السيقلى

أ.الاء البرعي الوسطى - دير البلح/ ١٩٧٢٣٨٨٤٣ ٥ ٠ ٠

اشراف

أ. صلاح البتان / طولكرم أ. عوض الواوي / طولكرم ج/٣٥٨٥٥٢٩٩٥٥٠

3/771711000

أ نبيل سلمن / غزة

ج/٥٢٨٥٢٥٥٥٠

أ. محمد الفرا / خان يونس

أ. سامى بدر /غزة

ج/٠٥٣٢٥٧٧٥٥٠

أ يلال الكخن / نابلس

چ/٧٠٢٢٨٣٥٥٠

أرنا زيادة /غزة

ج/٠٣٠٢٥٨٩٩٥٠

د. نعيم أبو غلوة / شمال غزة

ج/١٧٤٤٤٥٩٥٠

أ.عننان شعت /رفح

ج/٥٧٤٣٨٩٨٥٥٠

أ. زياد عمرو / الخليل

ج/٠٢٢١٣٧٥٥٠

أ. كمال شلبي/ طولكرم ج/٤٧٨٤٤٥٩٥٠

المنهاج الجديد Y . 19 - Y . 1 A

الملتقى التربوي www.wepal.net

المحستويات

10_1	ب التفاضل	
١	متوسط التغير	1_1
4	المشتقة الأولى	Y_1
1 A	قواعد الاشتقاق	٣-١
77	مشتقة الاقترانات المثلثية	٤_١
**	قاعدة لوبيتال ومشتقة الاقتران الاسي واللوغارتيمي	0_1
۳۷	تطبيقات هندسية وفيزيائية	1-1
٤٦	قاعدة السلسلة	٧_١
٧٥	الاشتقاق الضمني	۸_۱
70	تمارين عامة	

114-14	تطبيقات التفاضل	
٨٧	نظريتا رول والقيمة المتوسطة	1_4
9.6	الاقترانات المتزايدة والمتناقصة	۲_۲
1.7	القيم القصوى	٣-٢
117	التقعر ونقط الانعطاف	٤_٢
174	تطبيقات عملية على القيم القصوى	0_4
184	تمارين عامة	

11107	وفات والمحددات	المصفو
107	المصفوفة	١_٣
109	العمليات على المصفوفة	۲-۳
1 7 7	المحددات	٣_٣
14.	النظير الضربي للمصفوفة المربعة	٤_٣
1.4.4	حل انظمة المعادلات الخطية باستخدام	٥_٣
	فات	المصفوذ
196	تمارين عامة	

الوحدة

الوحدة

7

الوحدة

٣

المنظمة المنظم

كراسة الكامل

المحدة الاملى / حسابم التخاضل

الدرس الاول /متوسط التغير

القسم الأول: الملخص

تعریف:

$$\begin{array}{c} 1 - \text{ argund lirising the limits} \\ 1 - \text{ argund lirising the limits} \\ 1 - \text{ argund lirising the limits} \\ 1 - \text{ argund lirising the liring} \\ 2 - \text{ limits} \\ 1 - \text{ limits} \\ 2 - \text{ limits} \\ 3 - \text{ limits} \\ 4 - \text{ limits} \\ 2 - \text{ limits} \\ 3 - \text{ limits} \\ 4 - \text{ limits} \\ 4$$

ملاحظة •

- متوسط التغير = ميل القاطع (المستقيم) = $\frac{m_{\gamma} m_{\gamma}}{m_{\gamma} m_{\gamma}}$
- الميل = ظا ه حيث ه الزاوية المحصورة بين المستقيم ومحور السينات الموجب.

احذف من قاموسك هذه الكلمات نهائياً " لا أستطيع ، لا أقدر ، لن أنجح ، سوف وما إلى ذلك "

القسم الثائي: حلول تمارين الكتاب

السؤال الأول : إذا كان ق(س) = $\frac{4}{m} + m^{-1}$ ، جد :

فرع أ: مقدار التغير في الاقتران ق(س)عندما تتغير س من ٣ إلى ٥

$$\frac{\forall \Lambda}{\circ} = (\mathbf{q} + \frac{\mathbf{r}}{\mathbf{r}}) - (\mathbf{r} + \frac{\mathbf{r}}{\mathbf{r}}) = (\mathbf{r}) \mathbf{v} - (\mathbf{r}) \mathbf{v} = (\mathbf{r}) \mathbf{v} - (\mathbf{r}) \mathbf{v} = (\mathbf{r}) \mathbf{v} - (\mathbf{r}) \mathbf{v} = (\mathbf{r}) \mathbf{v} + (\mathbf{r}) \mathbf$$

فرع ب: متوسط التغير في الاقتران ق(س)عندما تتغير س من ٤ إلى ١

$$\frac{1V}{\xi} = \frac{17 - \frac{W}{\xi} - 1 + W}{W - 1} = \frac{(\xi)\upsilon - (1)\upsilon}{W - 1} = \frac{\omega\Delta}{\omega\Delta} = \text{burging}$$

 $\pi \cdot \frac{\pi}{\sqrt{\pi}}$ النايي: إذا كان ق(س) = جتا س - π جاس جد متوسط التغير في الاقتران ق(س) في الفترة المرابع ال

$$\frac{\left(\frac{\pi}{7}\right) \circ - (\pi) \circ \theta}{\frac{\pi}{7} - \pi} = \frac{\Delta}{\Delta} = \frac{\Delta}{\Delta}$$
 متوسط التغير لهِ ق (ω)

$$\frac{\xi}{\pi} = \frac{(\frac{\pi}{Y} - \frac{\pi}{Y} - \frac{\pi}{Y}) - (\pi - \frac{\pi}{Y} - \frac{\pi}{Y})}{\frac{\pi}{Y}} = \frac{\pi}{\pi}$$

وكان متوسط التغير للاقتران ق عندما تتغير س من ١ إلى 1(1 > 7) يساوي ٩ ، احسب قيمة 1 ?

$$egin{aligned} \mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta} \end{aligned}$$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$
 $\mathbf{q} &= \frac{(1) \upsilon - (1) \upsilon}{1 - 1} = \frac{\Delta}{\Delta}$

السؤال الرابع: إذا كان متوسط التغير للاقتران ق(س) في الفترة [٣٥١] ، يساوي ٤ ، وكان ك (س) $= m^{\gamma} + \gamma$ نفس الفترة γ الفترة γ الفترة γ الفترة γ

الحل متوسط التغیر للاقتران ق(س)= ٤
$$\frac{(1)\upsilon - (7)\upsilon}{1-r} \iff \frac{(1)\upsilon - (7)\upsilon}{1-r} \iff \frac{(1)\upsilon - (7)\upsilon}{1-r} \iff \frac{(1)\upsilon - (7)\upsilon}{1-r} \implies \frac{(1)\upsilon - (7)\upsilon}{1-r} = \frac{2}{\omega} \implies \frac{(1)\upsilon - (7)\upsilon}{1-r} = \frac{2}{\omega} \implies \frac{(1)\upsilon - (7)\upsilon - (7)\upsilon}{1-r} = \frac{(1)\upsilon - (7)\upsilon - (7)\upsilon$$

السؤال الخامس: إذا قطع المستقيم ل منحنى الاقتران ق (س)في النقطتين (١، ١) ، (٣، ب) وصنع زاوية قياسها 1 مع الاتجاه الموجب لمحور السينات، احسب متوسط التغير في الاقتران هـ (س) 2 ق (س) 2 المحور السينات، احسب متوسط التغير في الاقتران هـ (س) في الفترة [١،٣]

الطی متوسط التغیر للافتران ق(س) (المیل) = ظا ۱۳۵
$$^{\circ}$$
 متوسط التغیر للافتران ق(س) (المیل) = ظا ۱۳۵ $^{\circ}$ $^{\circ}$

السرعة المتوسطة
$$\frac{\Delta \dot{\omega}}{1-W} = \frac{0}{\Delta \dot{\omega}}$$
 السرعة المتوسطة $\frac{(1)\upsilon - (v)\upsilon}{1-W} = \frac{\dot{\omega}\dot{\omega}}{1-W}$ $\frac{(1)\upsilon - (v)\upsilon - (v)\upsilon + 9}{7}$ $\gamma = \frac{(v)\upsilon - (v)\upsilon + 9}{7}$ $\gamma = \frac{v-1-v}{7}$ $\gamma = \frac{v+\lambda}{7}$ $\gamma = \frac{v+\lambda}{7}$

السؤال السابع : إذا كان ق(س) = 1 س + ج أثبت أن متوسط التغير للاقتران ق(س) عندما تتغير س

من ۲ إلى ن يساوي
$$1(\omega+\gamma)+$$
ب ؟

$$\frac{(-1) - (-1) - (-1) + (-1)}{1 - (-1) + ($$

السؤال الثامن:

الحل

فرع أ: إذا كان ق(س) = س + ه $^{-+}$ جد متوسط التغير في الاقتران ق(س) عندما تتغير س من $^{-}$ إلى $^{-}$ (ه العدد النيبيري)

الحل متوسط التغير للاقتران ق
$$(m) = \frac{\bar{b}(1) - \bar{b}(0)}{1 - 0}$$

$$= (1 + a^{(+)}) - (0 + a^{(+)})$$

$$= 1 + a^{(+)} - a^{(+)}$$

$$= a^{(+)} - a^{(+)}$$

فرع ب : إذا كان متوسط التغير للاقتران ق (س) = س + لوس من ا إلى ه يساوي $\frac{7}{1-8}$ ، احسب قيمة ن؟

متوسط التغیر للاقتران ق
$$(\omega) = \frac{\gamma - \alpha}{1 - \alpha}$$

ملاحظة:
$$\frac{(\alpha) - \tilde{u}(1)}{\alpha - 1} = \frac{\gamma - \alpha}{1 - \alpha}$$

$$\frac{(\alpha + \lfloor \frac{\alpha}{2} \alpha^{\vee} - 1 - 1 - \alpha) - (1 + \lfloor \frac{\alpha}{2} 1^{\vee} - 1 - \alpha) - (1 + \lfloor \frac{\alpha}{2} 1^$$

القسم الثالث: أسئلة اثرائية

متوسط التغير

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
	إذا كان متوسط تغير الاقتران ق (س) في الفترة [١ ، ١٦] يساوي ٩ ، فإن	١
ج	متوسط تغير الاقتران ق (س٢) في الفترة [١ ، ٤] هو:	
	ا) ۹ (ب ع) ۵۶ د) ۱۰ (ب	
	إذا كان متوسط التغير للاقتران ق (س) في الفترة [١ ، ٤] يساوي ٥	۲
Í	ق (١) = ٢ ، فإن ق (٤) يساوي :	
	أ) ۱۷ (ټ ١٦ (ټ ١٧ ١٠)	
	إذا كان ق(س) اقتراناً بحيث ق(٣) = ق(٥) + أ وكان متوسط تغير	٣
د	ق (س) في الفترة [٣ ، ٥] يساوي ١٠ فإن قيمة أهي:	
	ر) ۲۰ (۶ - ۲۰ (۲۰ از) ۲۰ از ۱۰ - ۲۰ (۱۰ از)	
		4
	إذا كان ق(س) = ٢ _ س٢ معرفاً على [١، ب] بحيث كان متوسط تغير ق	
í	(س) في تلك الفترة يساوي _ ٣ فإن قيمة ب هي :	
,	ر) ۲ (ب ۳ (ب ۲ (۱	1
	(=	
		1

ل	النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الاو	سلسلة
7	إذا علمت أن متوسط التغير للاقتران ق (س) في الفترة [۲ ، ۱۷] يساوي ٩ ، فان متوسط تغير الاقتران هـ(س) = ق (س ٢ + ١) في الفترة [١ ، ٤] يساوى أ ٣ (ب) ٩٤ ج) ١٥ د) ٥٤	O
Ļ	إذا كان متوسط تغير الاقتران عندما تتغير س بين س = ۱ ، س = ۹ ، مساويا ٥ فان متوسط تغير الاقتران ل (س) = m^7 ق (m^7 بين m^7 ، m^7 ق = m^7 بين m^7 ، m^7 ق (m^7 بين m^7 ، m^7 بين m^7 ، m^7 و المعاوى :	7
€	اذا كان متوسط تغير الاقتران ق $(m) = m^7 - 0$ في الفترة $[13+1]$ يساوي 9 ، فأن قيمة أهي : أ) صفر ب m ج m د m د m القسم الثاني m أجب عن الأسئلة التالية	Y
٣	لیکن ق (س) =	•
Y	إذا كان المستقيم القاطع لمنحنى الاقتران ق(س) في النقطتين (، ق(۱)) ، (π ، π) يصنع زاوية مقدارها π ، π مع محور السينات الموجب . احسب متوسط التغير للاقتران هـ (س) = $\frac{7}{8}$ في الفترة [π ، π]	Y
V	أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي	اعداد

۲	إذا كان متوسط التغير للاقتران ق(س) = $\frac{\sqrt{3m+1}}{2}$ في الفترة [، ، ب] يساوي ۱ ، فما قيمة الثابت ب ؟	٣
۱۳	إذا كان متوسط تغير الاقتران ق (س) على [-	ź
٧	إذا كان متوسط تغير الاقتران ق (س) في الفترة [١ ، ٢] يساوي ٤ ، ومتوسط تغير ق(س) في الفترة تغير ق(س) في الفترة [١ ، ٥]	0

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية:	#
٧٢	اذا كان متوسط التغير للاقتران ق (m) في $[730]$ يساوي Λ ، وكان $(\infty) = \Lambda - \delta \Lambda$ (∞) جد متوسط التغير للاقتران ه $(\infty) = \Lambda - \delta \Lambda^{7}$ (∞) في $[730]$?	,
4	اذا كان 0 0 0 0 0 0 0 0 وكان متوسط التغير في الاقتران ق 0 0 0 0 0 0 0 0 0 0	۲
1 * V	اذا كان متوسط التغير للاقتران ق (m) في $[73]$ يساوي 7 3 أحسب متوسط تغير الاقتران ه $(m)=m^7$ و $N(m)-7$ في $[730]$ علما بأن ه (m) يمر بالنقطة $(73-7)$?	٣

كراسية الكامل

الوحدة الاولى / حسابم التخاضل

الدرس الثاني / المشتقة الاولى

القسم الأول: الملخص

معدل التغير للاقتران v(m) أو المشتقة الأولى للاقتران v(m) عند النقطة v(m) :

$$\widetilde{\widetilde{\mathbf{g}}}(w_{1}) = \mathbf{v}_{1} \underbrace{\widetilde{\mathbf{g}}(w) - \widetilde{\mathbf{g}}(w_{1})}_{w_{1} - w_{1}}$$

يجوز استخدام أى قانون من القوانين الثلاثة عند التطبيق على تعريف المشتقة الأولى

$$\widetilde{\widetilde{\mathfrak{g}}}(w) = \underbrace{i_{\omega} + \omega - \widetilde{\mathfrak{g}}(w)}_{\omega \to \infty}$$

$$\overline{\underline{\mathbf{g}}}(w) = \mathbf{i} \underbrace{\mathbf{g}(3) - \underline{\mathbf{g}}(w)}_{3-w}$$

• المشتقة الأولى تساوي نهاية متوسط التغير للاقتران ق (س) في الفترة [س، س، + ه] عندما تؤول هـ الى الصفر ، أي أن :

$$\widetilde{\widetilde{\mathbb{G}}}(w_{1}) = \sum_{k \to \infty} \frac{\Delta w}{\Delta w}$$

المشتقة الأولى = ميل المماس

كلما تذكرت أن الدعاء قد يغير القدر أتفاءل وأرتاح نفسياً فيا رب وكلتك أمرى فإنى لا أحسن التدبير.

أ. بلال أبو غلوة

القسم الثاني: حلول تمارين الكتاب

السؤال الأول : اذا كانت ص = ق(س) وتغيرت س من ـ ١ الى ـ ١ +هـ بحيث أن \triangle ص = ٢هـ ه ` ، فجد قیمهٔ v'(-1)

$$\Delta w = w_{\gamma} - w_{\gamma}$$

$$= (-1 + \alpha) - (-1) = \alpha$$

$$\bar{b}(-1) = \dot{\lambda}$$

$$\bar{b}(-1) = \dot{$$

السؤال الثاني : جد باستخدام تعريف المشتقة عند قيم س في كل حالة مما يأتي :

$$\frac{\dot{\varrho}(3)}{\dot{\varrho}} : \omega + \omega + \omega + \omega + \omega = \frac{\dot{\varrho}(3)}{\dot{\varrho}} = \frac{\dot{\varrho}(3)}$$

$$\frac{1}{\frac{1}{W} - \frac{1}{W}} = \frac{(W)U - (W)U}{W - W} = \frac{(W)U - (W)U}{W - W} = \frac{(W)U - (W)U}{W - W} = \frac{ws}{ws}$$

$$\frac{1}{W} - \frac{1}{W} = \frac$$

$$\frac{1}{2}$$
 فرع جے: $\omega = [\omega] \times \omega^{\gamma}$ ، عند $\omega = 0$ ، وعند $\omega = \frac{\gamma}{\gamma}$

عندما س = ، (نقطة تحول)

$$\cdot = \frac{\cdot}{\omega}$$
 أولاً : من جهة اليمين $\tilde{\omega}(\cdot) = \frac{\dot{\omega}(\cdot) - \dot{\omega}(\cdot)}{\dot{\omega}(\cdot)} = \frac{\dot{\omega}(\cdot) - \dot{\omega}(\cdot)}{\dot{\omega}(\cdot)} = \frac{\dot{\omega}(\cdot)}{\dot{\omega}(\cdot)} = \frac{\dot{\omega}(\cdot)}{\dot{\omega}(\cdot)}$

$$\mathbf{v} = \mathbf{v} =$$

$$(\stackrel{\cdot}{(\cdot)}\stackrel{\cdot}{\mathcal{O}}
eq (\stackrel{\cdot}{\cdot})\stackrel{\cdot}{\mathcal{O}}$$
 لأنه $\stackrel{\cdot}{\mathcal{O}}(\stackrel{\cdot}{\cdot})\stackrel{\cdot}{\mathcal{O}}$

$$= \frac{1}{\frac{1}{\gamma} - \omega} = \frac{1}{\frac{1}{\gamma} - \omega} = \frac{1}{\frac{1}{\gamma} - \omega} = \frac{(\frac{1}{\gamma}) \upsilon - (\omega) \upsilon}{\frac{1}{\gamma} - \omega} = \frac{(\frac{1}{\gamma}) \upsilon - (\omega) \upsilon}{\frac{1}{\gamma} - \omega} = \frac{1}{\gamma} = \omega$$
 askal $\omega = \frac{1}{\gamma} = \omega$

$$1 \ge w \ge 1$$
 ، $1 \le w \ge 1$ ، $1 \le w \ge 1$ باستخدام تعریف المشتقة. $1 \le w \ge 1$ ، $1 \le w \ge 1$

$$=$$
 $\frac{7\sqrt{3+\sqrt{m+7}-\sqrt{m+2}}}{3-m}$ (بأخذ ٢عامل مشترك ثم الضرب في المرافق)

$$\frac{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} \times \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V} - \overline{\Upsilon + \varepsilon V}}{\overline{\Upsilon + \omega V} + \overline{\Upsilon + \varepsilon V}} = \frac{\overline{\Upsilon + \omega V}}{\overline{\Upsilon + \omega V}} = \frac{\overline{\Upsilon + \omega V}$$

$$= Y = \frac{(3+7)-(m+7)}{(7+m)(3+7)+(m+7)}$$

$$Y = \frac{7 + 7 - 3 - 7 - 4}{(7 + 7)(7 + 7)(7 + 7)(7 + 7)}$$

$$= Y \xrightarrow{\underline{\beta} - \underline{\omega}} \frac{3 - \underline{\omega}}{(3 - \underline{\omega})(\sqrt{3 + \underline{w}} + \sqrt{\underline{\omega} + \underline{w}})} = \frac{3 - \underline{\omega}}{(3 - \underline{\omega})(\sqrt{3 + \underline{w}} + \sqrt{\underline{\omega} + \underline{w}})}$$

$$\frac{1}{\overline{m+m}} = \frac{1}{\overline{m+m}} \times Y =$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1$$

السؤال الرابع: صفيحة على شكل مستطيل طولها يساوي ٣ أمثال عرضها ، تتمدد بالتسخين بحيث تحتفظ بشكلها وبنفس النسبة بين أبعادها ، احسب معدل التغير في مساحة الصفيحة بالنسبة لعرضها عندما يكون العرض ٦ سم.

$$= \frac{\Upsilon(3-\Gamma)(3+\Gamma)}{3-\Gamma}$$

$$= \frac{\Upsilon(3+\Gamma)(3+\Gamma)}{3-\Gamma}$$

$$= \Upsilon(3+\Gamma) = \Upsilon \times \Upsilon = (3+\Gamma) = ($$

السؤال الخامس: اذا كان $\mathfrak{v}(1)=-7$ ، $\mathfrak{v}(\mathfrak{T})=-7$ ، جد قيمة النهايات الاتية :

$$\frac{i_{0} \cdot 3 \cdot \frac{1}{1} \cdot$$

$$\frac{\dot{\upsilon}_{0} + \dot{\upsilon}_{0}}{\dot{\upsilon}_{0} + \dot{\upsilon}_{0}} = \dot{\upsilon}_{0} + \dot{\upsilon}_{0} + \dot{\upsilon}_{0} + \dot{\upsilon}_{0} + \dot{\upsilon}_{0}}$$

$$= \dot{\upsilon}_{0} + \dot{\upsilon}_{0} +$$

$$\frac{i\sigma_{2} c}{i\sigma_{2} c} : \frac{i\sigma_{2} c}{i\sigma_{2} c} = \frac{i$$

$$= \frac{\frac{\gamma}{1} \times \overline{0}(1) - \frac{\gamma}{1} \times \overline{0}(1)}{1 \cdot 1} \times \overline{0}(1)$$

$$= \frac{\gamma}{1} \times -\gamma + \frac{\gamma}{1} \times -\gamma$$

$$= \frac{\gamma}{1} = \frac{\gamma}{1} = \frac{\gamma}{1} = \frac{\gamma}{1} \times -\gamma$$

القسم الثالث: اسئلة اثرائية

المشتقة الأولى

الجواب	أجب عن الأسئلة الاتية	#
٩ ٢	إذا ق/(٥) = ٣ فأوجد نها <u>ق (٣س - ٧) - ق (٩)</u>	•
7 9	استخدم تعریف المشتقة الأولی فی إیجاد المشتقة للاقتران ق (س) = $\frac{m-1}{m+1}$ عند س = ۲	۲
10	استخدم تعریف المشتقة الأولى في إیجاد مشتقة الاقتران $(m) = 0$ $(m) = 0$.	٣
<u>'</u>	استخدم تعریف المشتقة الأولى عند نقطة لإیجاد مشتقة الاقتران $\mathfrak{G}(w) = \sqrt{ 2 - 2 }$ عند $w=7$	٤
۲	إذا علمت أن ك(س) = ٢س ق(س) - ٤ ، وأن - ٢ق(٢) = ٣قَ(٢) = ٦ أوجد كَ(٢) باستخدام تعريف المشتقة عند نقطة.	٥

أ. سليم السيقلي

أ. بلال أبو غلوة أ. آلاء الجزار

<u>ن</u>	سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الاو	
- ۲ - ۲) ۲)	س $= \frac{w}{w}$ اذا كان ق (س) $= \frac{w}{w} + \frac{1}{2}$ ، س $= \frac{1}{2}$ ، فأوجد ق $= \frac{1}{2}$ (س) باستخدام تعریف المشتقة	٦
11	ا ۱ ا إذا كان ق(س) = س + فأوجد ق/ (۱۱) باستخدام تعريف المشتقة س	٧
٣	$egin{aligned} egin{aligned} eg$	٨
٧	احسب: س نها مریف (۱) با مستد می (۱) با مستد می است قر (۱) با می است و (س) – قر (۱) با می می می می است و اس	٩
٤٥	اذا كان التغير في الاقتران ص $=$ ق (m) يساوي ه m ه $+$ ه 1 ه فان \overline{b}	١.
<u>\frac{\fin}}}{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac}\frac{\frac{\frac}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac}\frac{\frac{\f{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}}{\frac{\frac{\f{\frac</u>	$\xi = (\Upsilon)$ علما بان ق $(\Upsilon) = \frac{(\Upsilon) - (\overline{\Upsilon + \xi}) \cup (\overline{\Upsilon + \xi})}{\Upsilon - \xi}$ علما بان ق $(\Upsilon) = \chi$	11
غ.م	$(w)=egin{pmatrix} w & w & w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w \ w & w & w & w & w \ w & w & w & w & w \ w & w & w & w & w \ w & w & w & w & w \ w & w & w & w & w \ w & w & w & w & w \ w & w & w & w & w & w \ w & w & w & w & w & w \ w & w $	١٢
٩	اذا كان متوسط تغير يساوي $\binom{m}{2} + 2 m$ ه فجد قَ $\binom{m}{2}$	١٣
<u>۱</u> <u>۶</u> ق (۲)	$\frac{\mathcal{O}(\sqrt{ \mathcal{O} }) - \mathcal{O}(\sqrt{2})}{\xi - \mathcal{O}(\sqrt{2})} \underbrace{\frac{\mathcal{O}(\sqrt{2})}{\xi - \mathcal{O}(\sqrt{2})}}_{\xi \to 0}$	1 £
٤٧_	اذا کانت $\overline{\tilde{s}}(3) = 7$ فجد نہے $\frac{\sigma(3-7a) - \sigma(3+6a)}{a}$	10
17	أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي	اعداد

۲(س-۲)	يف المشتقة	وجد قه (س) باستخدام تعر	$(\omega - Y)^{Y}$ ، أ	اذا کان قه (س	۲,
Í	ں فأن قَ (٣) = د) ٢١) يساوي ٥س ^٢ ه – ٣ه ^٢ س جـ) ٣٠	في الاقتران ص=ق(س) ب) ٣٦	اذا كان التغير أ) ٥٤	١٧

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية :	#
	$\frac{(w)}{2} + \frac{(w)}{w} = \frac{(w)}{\frac{2}{2}} - \frac{(w)}{w}$ $\frac{(w)}{2} + \frac{(w)}{w} = \frac{(w)}{2} - \frac{(w)}{w}$ $\frac{(w)}{2} - \frac{(w)}{w}$,
1	اذا كان مقدار التغير في الاقتران ق (m) يعطي بالعلاقة $\Delta m = Tm^{7}\Delta m + T(\Delta m)$ $+ T\Delta m$ ، وكانت $\Delta m = Tm^{7}\Delta m + T(\Delta m)$ $\Delta m = Tm^{7}\Delta m$ Δm Δm Δm Δm Δm Δm Δ	*
۲_	اذا کان ق $(m+a)+a$ س $^{7}+$ ۱ه $=$ ق $(m)+$ ۲س ه 3 ب و اذا کان ق	٣
٤	اذا كان ق اقترانا قابلا للاشتقاق على ح وكان $ar{e}(w+a)=w^{7}a+w^{7}a+a$ و $ar{e}(w+a)=w^{7}a+a$	ŧ

أ. آلاء البرعي

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

كراسة الكامل

المحدة الاملى / حسابب التغاضل

الدرس الثالث / قواعد الاشتقاق

القسم الأول: الملخص

قاعدة: اذا كان

$$\cdot = (m)$$
 فإن $\overline{\mathcal{O}}$ (س) = ج عدد ثابت) فإن $\overline{\mathcal{O}}$

$$-\psi$$
 فإن $\overline{\psi}$ و ψ $= \psi$ ، ψ $= \psi$ $= \psi$

$$(w)$$
 ه (w) قابلین للاشتقاق ع

فإن:

ا - ك
$$(m)$$
 = $v(m)$ هابلاً للاشتقاق ا - ك

وتكون
$$\underline{\tilde{b}}(m) = \overline{\tilde{v}}(m) \pm \overline{\tilde{a}}(m)$$

ب - ك
$$(m) = \mathcal{O}(m) imes$$
قابلاً للاشتقاق

وتكون
$$\vec{b}(m) = v(m) \times \vec{a}(m) + a(m) \times \vec{v}(m)$$

$$= (w) = \frac{\sigma(w)}{a(w)}$$
 قابلاً للاشتقاق

$$oxed{contract} oxed{arphi}_{oxed{contract}} = oxed{ egin{aligned} oxed{ (w) imes ar{U}(w) - U(w) imes ar{A}(w)} } \end{array}} = oxed{ egin{aligned} oxed{ (w) imes ar{A}(w)}}_{oxed{C}} oxed{ (w) ar{A}(w)}_{oxed{C}} \end{array}}$$

كن جميل الخلق تهواك القلوب

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي -الفصل الاول القسم الثاني : حلول تمارين الكتاب

السؤال الأول: جد س (س) في كل مما يأتي عند قيم س إزاء كل منها:

$$1_{-}=$$
فرع أ: ق $(w)=w^{\circ}-w^{-1}+$ حيث جـ عدد ثابت ، عندما $w=1$

$$V = Y + 0 = (1 - 1)$$
 $\overline{U} = (1 - 1)^{2} - 1$ $\overline{U} = (1 - 1)^{2} -$

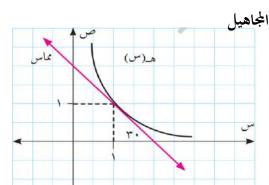
$$("")$$
 الحل $("")$ $("")$ $("")$ $("")$ $("")$

$$\xi \pi 1 = (9 \times \pi)(\pi + 1 + 1) + (1 - 7 \vee) = (\pi) \tilde{\upsilon}$$

$$(u)=\frac{w}{0-w}$$
 ، عندما $w=-7$ (یوجد قسمة) $(u)=\frac{w}{0-w}$

$$\frac{\left[(\omega Y -) \times Y \omega\right] - \left[\omega Y \times (Y \omega - 0)\right]}{\tilde{U}(\omega)} = \frac{\left[(\omega Y -) \times Y \omega\right] - \left[\omega Y \times (Y \omega - 0)\right]}{\tilde{U}(\omega)}$$

$$Y \leftarrow = \frac{\xi \times \xi - \xi - \times (\xi - 0)}{\Upsilon(\xi - 0)} = (\Upsilon -)\widetilde{\upsilon}$$


السؤال الثاني: بالاعتماد على المعطيات الواردة في الجدول المجاور، جد ما يأتي:

$$(\upsilon + \alpha^{7})^{2}(I) = \vec{\upsilon}(I) + 7\alpha(I) \times \vec{\alpha}(I) = 7 + 7 \times -1 \times -7 = 7 + 7 = 9$$

فرع ب :
$$\begin{pmatrix} w \\ 0 \end{pmatrix} \cdot \begin{pmatrix} \frac{w}{(w)} - (w) \end{pmatrix} \cdot \begin{pmatrix} \frac{w}{(w)} \end{pmatrix}$$
 () يوجد ضرب وقسمة)
$$\begin{bmatrix} \frac{w}{(w)} - w \\ \frac{w}{(w)} - w \end{pmatrix} = \begin{bmatrix} \frac{w}{(w)} + w \\ \frac{w}{(w)} \end{pmatrix}$$

$$7 - 9 - 7 + 5 = \frac{7 \times 7}{1} + 7 \times 1 \times 7 = \frac{7 \times 7}{1} + 7 \times 1 \times 7 = \frac{7 \times 7}{1} + \frac{7 \times 7}{1} = 3 + 7 - 9 = -7$$

السوال الثالث: اذا كان
$$\sigma(m) = \frac{m}{m+1}$$
 وكان الشكل المجاور يمثل منحنى الاقتران ه(س) فجد $\sigma(m) = \frac{m}{m+1}$ وكان الشكل المجاور يمثل منحنى الاقتران ه(س) فجد $\sigma(m) = \frac{m}{m+1}$

الحل $\left(\frac{\upsilon}{a}\right)^{\prime}(1) = \frac{a(1)\times\overline{\upsilon}(1)-\upsilon(1)\times\overline{a}(1)}{a^{\prime}(1)}$ بإيجاد المجاهيل

$$\boxed{1} \leftarrow \boxed{\frac{1}{Y} = (1)\upsilon} \Leftarrow \frac{\upsilon}{1+\frac{1}{Y}\upsilon} = (\upsilon)\upsilon$$

$$\boxed{\Upsilon} \leftarrow \boxed{\cdot = (1)^{\prime} \upsilon} \Leftarrow \frac{(\omega \Upsilon) \omega - (1 + \Upsilon \omega)}{\Upsilon (1 + \Upsilon \omega)} = (\omega)^{\prime} \upsilon$$

 \square من الرسم يتضح أن النقطة \square (۱،۱) تنتمي الى المنحنى \square هرا \square

زاوية ميل المماس = ١٥٠ (زاوية المماس هي الزاوية المحصورة بين محور السينات الموجب والمماس

$$a = 1100 - 1000$$

میل المماس = ظاء ۱
$$= \frac{1}{\overline{m}}$$

$$\underline{\Sigma} \leftarrow \left| \frac{1 - 1}{\overline{\Psi}} = (1) \right|$$
ميل المماس = هـ (1)

الان بالتعويض من ١١ ، ٣ ، ٣ ، ٤

السؤال الرابع:

$$-\frac{w}{600} + \frac{w}{1+w}$$
 ، أثبت أن $+\frac{w}{1+w}$ ، أثبت أن $+\frac{w}{1+w}$

$$\boxed{1} \leftarrow \boxed{\frac{1}{\Upsilon(1+\omega)} = \omega} \leftarrow \frac{1}{\Upsilon(1+\omega)} = \frac{\omega - 1 \times (1+\omega)}{\Upsilon(1+\omega)} = \omega \leftarrow \frac{\omega}{1+\omega} = \omega$$

$$\boxed{\Upsilon} \leftarrow \boxed{\frac{\Upsilon - }{ ^{\intercal} (1 + \omega)} = ^{\intercal} \omega} \Leftarrow \frac{\Upsilon - }{ ^{\intercal} (1 + \omega)} = \frac{(1 + \omega) \Upsilon - \cdot \times ^{\intercal} (1 + \omega)}{ ^{\natural} (1 + \omega)} = ^{\intercal} \omega \Leftarrow$$

$$\cdot = \frac{m \cdot - \cdots}{r \cdot (1+w)} + \frac{m \cdot r}{r \cdot (1+w)} = \frac{r - \cdots}{r \cdot (1+w)} \times w + \frac{1}{r \cdot (1+w)} \times \frac{w}{1+w} \times r = \frac{r - \cdots}{r \cdot (1+w)} \times \frac{w}{1+w} \times r = \frac{r - \cdots}{r \cdot (1+w)} \times \frac{w}{r \cdot (1+w)} \times \frac{w}{1+w} \times r = \frac{r - \cdots}{r \cdot (1+w)} \times \frac{w}{r \cdot (1+w)} \times \frac{w}{1+w} \times r = \frac{r - \cdots}{r \cdot (1+w)} \times \frac{w}{r \cdot (1+w)} \times \frac{w}{1+w} \times r = \frac{r - \cdots}{r \cdot (1+w)} \times \frac{w}{r \cdot (1+w)} \times \frac{w}{1+w} \times r = \frac{w}{r \cdot (1+w)} \times \frac{w}{r \cdot (1+w)}$$

$$\frac{6}{60}$$
 فرع ب: اذا کانت $\frac{6}{m} = \frac{6}{m}$ ، أثبت أن $\frac{6}{m} = \frac{6}{m}$

$$m = 10^{-7}$$
 بضرب الطرفين في س $m = 10^{-7}$ بضرب الطرفين في س

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

$$(1)^{\prime}$$
 و د $(1)^{\prime}$ ، جد $(1)^{\prime}$

الحل
$$(w) = (1 - w^{\frac{1}{2}})(1 + w^{\frac{1}{2}})(1 + w^{\frac{1}{2}})(1 + w^{\frac{1}{2}})$$
 (یوجد فرق بین مربعین) $= (1 - w^{\frac{1}{2}})(1 + w^{\frac{1}{2}})(1 + w^{\frac{1}{2}})(1 + w^{\frac{1}{2}})$ (یوجد فرق بین مربعین)

$$(m) = (1 - m)^{1/2}$$

: [m au] = [m au] هد [m] = [m au] : ها السيادي: إذا كانت [m] = [m]

$$\mathfrak{U} = \mathfrak{U}$$
 الحل $\mathfrak{U} = \mathfrak{U} = \mathfrak{U}$ $\mathfrak{U} = \mathfrak{U} = \mathfrak{U}$

إعادة تعريف ه (س)

$$oldsymbol{\cdot} = (w) = [Y^w]$$
 هـ $(w) = \frac{1}{Y}$ ، صفر الاقتران هـ $(w) = v$

$$\langle \cdot \rangle \sim \frac{1-\gamma}{\gamma} \quad \langle \cdot \rangle = (-1) \approx \langle \cdot \rangle = (-1) \approx \langle \cdot \rangle$$

أولا : فرع أ : جد ل (٠)

$$\cdot = \cdot \times \mathsf{Y} = (\cdot) \mathcal{V}$$

فرع ب: جد ه (س)

اعداد

$$(oldsymbol{v} imes oldsymbol{v} imes o$$

$$\begin{vmatrix} -\gamma & & -\gamma & \\ -\gamma & & & \gamma & \\ -\gamma & & & \gamma & \\ -\gamma & & & & \gamma & \\ -\gamma & & & & & \gamma & \\ -\gamma & & & & & \gamma & \\ -\gamma & & & & & \gamma & \\ -\gamma & & & & & \gamma & \\ -\gamma & & & & & & \gamma & \\ -\gamma & & & & & & \gamma & \\ -\gamma & & & & & & & \\ -\gamma & & & & & & & \\ -\gamma & & & & & & & \\ -\gamma & & & & & & & \\ -\gamma & & & & & & & \\ -\gamma & & & & & & & \\ -\gamma & & \\ -\gamma & & & \\ -\gamma & & & \\ -\gamma & & \\ -\gamma & & & \\ -\gamma$$

ثانيا / هل هذا يتناقض مع قاعدة مشتقة حاصل ضرب اقترانين؟ فسر اجابتك

الحل لا يتناقض مع القاعدة المذكورة ، لأن تطبيق القاعدة يكون فقط اذا كان كلا من هرس)، ص (س) قابلين

للاشتقاق عند س= ، وهذا ليس متحققا في السؤال لأن ه(س) غير متصل عند س= ، وبالتالي غير قابل لاشتقاق . أي أنه لا يمكن تطبيق القاعدة لعدم توفر الشروط.

$$1 \wedge = (\Upsilon)^{\#}$$
 السؤال السابع: إذا كان $\mathfrak{v}(w) = w^{4} + {}^{4}w^{7} - \Upsilon$ جد قيمة 1 ، حيث $\mathfrak{v}(\Upsilon) = \Lambda$

الحل
$$\sigma^{\prime}(m)=3m^{7}+71m^{7} \Rightarrow \sigma^{\prime\prime}(m)=71m^{7}+71m$$

٠٤ + ٣٢ ٤ = (س) ^{الل}

$$\boxed{\circ - = \uparrow} \Leftarrow \lnot \lnot - = \uparrow \lnot \leftarrow \land \land = \uparrow \lnot + \lnot \lor \lnot \lor = \land \land = (\lnot) \circlearrowleft \circ$$

 $^{\prime}$ لسؤال الثامن $^{\prime}$ اذا كان $^{\prime}$ $^{\prime}$ س $^{\prime}$ $^{\prime}$ السؤال الثامن $^{\prime\prime}$ اذا كان $^{\prime}$ الس $^{\prime}$ السؤال الثامن $^{\prime}$

$$^{1-\lambda}$$
 المحل $^{1-\lambda}$ $^{1-\lambda}$ $^{1-\lambda}$ $^{1-\lambda}$ $^{1-\lambda}$ $^{1-\lambda}$ $^{1-\lambda}$ $^{1-\lambda}$

$$u^{\dagger} = (w)^{\parallel} = v^{-\nu}$$
 من المعطى $v^{-\nu} = v^{-\nu}$ (حيث ن عدد ثابت)

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي -الفصل الآول من التساوي نجد أن $\sqrt{(N-1)(N-1)} = \frac{1}{N}$

$$\overline{ackslash} \leftarrow {ar{!}} = ({ extsf{Y}} - {ar{v}})({ extsf{N}} - {ar{v}})$$
ىن التساوي نجمد أن ${ar{v}}$

$$oxed{oxed}$$
 بالتعویض في المعادلة $oxed{oxed}$ $oxed{oxed}$ $oxed{oxed}$ $oxed{oxed}$ $oxed{oxed}$ $oxed{oxed}$

$$7 \xi = 7 \times 7 \times \xi = (7 - \xi) \times (1 - \xi) \times \xi = f$$

$$\frac{(\Upsilon)' \, \upsilon - (\Upsilon)' \, \upsilon}{|\omega|}$$
 بجد نہا کانت $(\Upsilon)' = \Upsilon$ ، $(\Upsilon)' = \Upsilon$ ، جد نہا التاسع : اذا کانت $(\Upsilon)' = \Upsilon$ ، $(\Upsilon)' = \Upsilon$

$$Y
ightharpoonup - Y
ighthar$$

$$\frac{(\Upsilon)^{\prime}\upsilon - (\varpi)^{\prime}\upsilon}{1 - \frac{\varpi}{\Upsilon}} = \frac{(\Upsilon)^{\prime}\upsilon - (\varpi\Upsilon)^{\prime}\upsilon}{1 - \varpi} = \frac{(\Upsilon)^{\prime}\upsilon - (\varpi\Upsilon)^{\prime}\upsilon}{1 - \varpi}$$

القسم الثالث: أسئلة اثرائية

قواعد الاشتقاق

الجواب	اختر الاجابة الصحيحة	#
·ť	$= \frac{(w) - (w) - (w)}{w - w}$ اِذَا کَانْتُ قَ $(w) = 7w^7 + 3$ فَإِن $\frac{w}{w - w} - w - w$ اَ $w - w$ اَ w	
٤	اذا کان ق (س) = س م م نوان نم می	۲
E	ادا کان ق (س) = س م $ + $ س الله وکان ق $ (-1) = \frac{1}{4} $ فان قیمة الثابت $ \frac{1}{4} $ تساوی $ \frac{1}{4} $ ($ \frac{1}{4} $) $ \frac{1}{4} $ ($ 1$	٣
7		٤
ĵ	إذا كان ق (س) = [س + ٠,٨] فإن ق (٥) = أ) صفر ب) ١ جـ) ٥ د) غير موجودة	٥

٦	$=(17)$ ، فإن ق $(m)=\left[\frac{1}{4}m+0\right]$ ، فإن ق $(17)=$	٦
	أ) ٤ ب) ١ ج) صفر د) غير موجودة	

) الا <u>ول</u>	· النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي -الفصل	سلسلة
	اذا کان هر س $=rac{\lceil 7m+1 ceil}{b(m)}$ وکان هر $\left(rac{1}{m} ight)=7$ هر $\left(rac{1}{m} ight)=-1$ فأن ل $\left(rac{1}{m} ight)$	٧
Í	$\frac{1-q}{q} (2 \qquad \frac{1}{q} (\div \frac{1-q}{\xi} (\div \frac{1}{\xi})^{\frac{1}{q}})$	

الجواب	أجب عن الأسئلة الاتية	#
\{Y-4\frac{q-}{Y}\}	$ ho$ إذا كان ق $(m)=rac{1}{m+m}$ وكانت ق $(1)=7$ فجد قيمة الثابت $rac{1}{n}$ و	`
<u>A</u>	ق (س) = w^{7} ه (س) مه (۲) = 7 ه خد ق (۲)) و $(7) = 7$ ه خد ق (۲)) و خد ق (۲)) و خد ق (۲) و خد و خ	۲
<u>'</u>	$(1) = -7$ ىق $(1) = 7$ فجد $(\sqrt{m}, \bar{v}(m))$	٣
١	$\ddot{v}(\omega) = \frac{ \omega - 1 \omega}{ \omega + 1 }$ فجد ق $\tilde{v}(\cdot)$	ŧ
٣	$\left(\frac{o-j}{r}\right)$ ق $(w)=[w] imes w\inj-r$ و جد ق	•
۲	† ق $(w)= ^{\dagger}+1$ ه $(w)= ^{\dagger}$ س $(\ddot{b}- ^{\dagger})$ ماقیمة † ؟	٦
	$(w) = \frac{\left w^{7} - w + 3\right }{w(w - 1)}$ فجد ق (w)	v

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي -الفصل الاول القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
	اذا کان قَ $(7) = 0$ ں $(7) = 7$ ہھ $(7) = 3$ وکان	١
٣ ٦—	$\tilde{v}(m) = \frac{\gamma a(m) - \gamma m}{m}, \stackrel{\text{e. }}{v} \tilde{v}(\gamma)$	
	اذا کان ل $(w)=$ ق $(w) imes$ ه (w) وکانت	
	ق $(w) imes $ ق $(w) =$ ج،ج $\in \mathcal{S}$ وكاتت ق (w) ه (w) موجودة ، اثبت ان	*
	$\frac{\ddot{\mathcal{U}}}{\ddot{\mathcal{U}}} = \frac{\ddot{\ddot{\mathcal{U}}}}{\ddot{\ddot{\mathcal{U}}}} + \frac{\ddot{\ddot{\mathcal{U}}}}{\ddot{\ddot{\mathcal{U}}}}$	
ق (س)	$\mathfrak{C}(w)$ اقتران کثیر حدود من الدرجة الثالثة بحیث ق $(-1)=0$ ق	٣
W + w\x + \tau -	ق $-(-1)=-7$ ى ق $-(-1)=7$ ، جد قاعدة الاقتران ق $-(-1)$	

گر اسباة الكاماء

الوحدة الاولى / حسابب التغاضل

الدرس الرابع/ مشتقة الاقترانات المثلثية

القسم الأول: الملخص

قاعدة :إذا كان :

$$(w) =$$
جتاس فإن $\overline{\mathcal{G}}(w) =$ جتاس

$$-$$
جاس فإن $\overline{\mathcal{G}}(w) = -$ جاس حاس

$$=$$
ظاس فإن $\overline{\mathcal{G}}$ $($ $\overline{\mathcal{G}}$ $)=$ قا 7 $\overline{\mathcal{G}}$

ع
$$\overline{\mathcal{G}}(\omega)$$
 =قاس فإن $\overline{\mathcal{G}}(\omega)$ =قاس ظاس

$$\mathbf{o}$$
 - $\mathbf{v}(\mathbf{w})$ = ظتاس فإن $\mathbf{v}(\mathbf{w})$ = $-$ قتا $\mathbf{v}(\mathbf{w})$

إن الاتجاه الذي يبدأ مع التعلم سوف يكون من شأنه أن يحدد حياه المرع في المستقبل

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الاول القسم الثاني : حلول تمارين الكتاب

السؤال الأول: جد عص لكل مما يأتي:

فرع أ: ص = ٢جتاس - ٢ظاس

فرع ب : <u>۱ قاس</u> فرع ب : <u>۱ ـ قاس</u>

$$\overline{\underline{(1+\overline{b})(-\overline{b})-(1-\overline{b})}} = \overline{\underline{(1+\overline{b})(-\overline{b})}} = \overline{\underline{(1+\overline{b})}}$$

$$=\frac{-\text{Bluxdlm}-\text{Bluxdlm}-\text{Bluxdlm}}{\text{Fluxdlm}}=\frac{-\text{Bluxdlm}+\text{Bluxdlm}-\text{Bluxdlm}}{\text{Fluxdlm}}=\frac{-\text{Bluxdlm}}{\text{Fluxdlm}}$$

فرع جه : ص = قراس + خاراس

$$\frac{\left(\overline{\mathbf{u}}^{\mathsf{T}} - \mathbf{u} - \mathbf{u}^{\mathsf{T}} - \mathbf{u} - \mathbf{u}^{\mathsf{T}} - \mathbf{u}^$$

$$= \frac{ \underbrace{ \text{قتاس} + \text{dialm} + \text{meal }^{\text{Y}} \text{m}}_{\text{Call}} + \text{meal }^{\text{Y}} \text{m}}_{\text{Call}} + \text{meal }^{\text{Call}} + \text{meal }^{\text{C$$

$$\frac{dulum + 1}{dulum + dulum + dulum$$

(حل اخر باستخدام اولا الضرب التبادلي ثم الاششتقاق)

فرع د : ص = س ٢ قاس

الحل

اعداد

$$\widetilde{\omega} = \omega^{\gamma}$$
قاسظاس + ۲سقاس $\Longrightarrow \widetilde{\omega} = \overline{\omega}$ قاس $(\gamma \omega + \omega^{\gamma})$ ظاس

أ. آلاء الجزار أ. بلال أبو غلوة أ سليم السيقلي أ. آلاء البرعي

$$\left(\begin{smallmatrix} \Upsilon & W + 1 \end{smallmatrix}\right)$$
السؤال الثاني : اذا كانت $W = \text{طاس}$ ، س زاوية حادة ، أثبت أن $W = \text{طاس}$

$$= \Upsilon$$
اس بالتعویض عن المعطی $= d$ اس $= d$ اس $= d$ اس

$$^{\prime\prime}$$
س ص $^{\prime\prime}$ + کس $^{\prime\prime}$ + ص س $^{\prime\prime}$ (بالقسمة على س، س

$$\bullet = \omega + \frac{1}{2} + \omega + \omega = 0$$

$$-\infty$$
 السؤال الرابع : اذا كان $\sigma(m)=rac{1}{7}$ س $m=1$ جياس ، $m\in [\pi Y$ السؤال الرابع : اذا كان $\pi(m)=1$

$$\sigma(m) = \frac{1}{7}m^{7} -$$

$$\pi$$
۲، π ۲ – π حیث س π π – π حیث س π

الحل

$$\frac{\mathsf{Blue}(\mathsf{w}^{\mathsf{Y}} + \mathsf{a}) - \mathsf{Blue}^{\mathsf{Y}}}{\mathsf{a}} = \frac{\mathsf{Blue}^{\mathsf{Y}} + \mathsf{a}}{\mathsf{a}}$$

$$\frac{1}{1} \frac{\operatorname{dist}(m^{1} + a) - \operatorname{dist}(m^{2})}{a} = m^{2}$$

القسم الثالث: اسئلة اثرائية

مشتقة الاقترنات المثلثية

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
ب	اُوجِد نها جتا (۲س ـ هـ) ـ جتا٢س <u>ـ</u> هـ <u>ـ</u> ، هـ	•
	أ) ـ ٢ جا ٢س ب) جا ٢س جـ) ٢ جا ٢س د) ـ جا ٢س	
ę.	إذا كان ق (س) = جتا ٢س ، فإن ق " (س) + ٥ ق (س) تساوي :	4
,	أ) جتا ٢س ب) ٩ جتا ٢س جـ) ـ ٩ جتا ٢س د) ـ جتا ٢س	
Í	اذا كان $ص = قا س + ظا س ، فإن $	٣
	أ) قاس ب) قتا س ج) ـ قا س د) ـ قتاس	

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
	اذا کانت $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$ ، حیث $\frac{1}{2} = \frac{1}{2}$ ، حیث $\frac{1}{2} = \frac{1}{2}$ کانت	1

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الاول اذا کان 0 = + 1 هـ، 0 = -1 هـ، أثبت أن : $\frac{c^{7}0}{c_{0}} + 7$ م $\frac{c}{c_{0}} = -1$

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
الجواب	الجب على الاسلية الاللية	#
・, \ Y = と ・, \ ٤ = ご	اذا كانت المسافة التي يقطعها جسم يتحرك في خط مستقيم بعد ن ثانية من بدء الحركة تعطى بالقانون ف $=$ حا $^{7}\left(\frac{\nu}{\gamma}\right)^{3}$ ، جد السرعة والتسارع عندما ف $=$ 7 8 , 9	•
{161-60}	اذا کان $\gamma(m) = $ جا $m + $ اجتا m $ > $ جتا $m \neq $ ، وکان $\gamma(m) = -\gamma(m)$ ، جد قیمهٔ $\gamma(m) = -\gamma(m)$ ، جد قیمهٔ $\gamma(m) = -\gamma(m)$	۲
$\pi > \omega > .$ سرجاس + ۲ جیاس $ \pi$ ۲ > سرجاس - π ۲ > سرجاس π 2 سرجاس π 3 π 4 π 4 π 5 π 6 π 6 π 7 π 7 π 8 π 9	$(w)=w$ اذا کان ق $(w)=w$ جاس $ \omega $ ، س $\in [\pi$ ۲۲، آ، جد ق π	٣

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

الأكلماء

الوحدة الاولى / حسابم التغاضل

الدرس الخامس/ قاعدة لوبيتال ومشتقة الاقتران الاسى واللوغاريتمي

القسم الأول: الملخص

١ ـ قاعدة لوبيتال:

إذا كان $\mathfrak{G}(m)$ ، هر(m) اقترانين قابلين للاشتقاق عند النقطة m=1 ، ل \in ح وكانت :

$$J = \frac{U(m)}{a(m)}$$

$$\frac{1}{2} = \frac{\mathcal{O}(m)}{\mathbb{A}(m)} = \frac{1}{2}$$

٢ ـ إذا كان:

 $\overset{-}{\mathsf{l}} = \overset{-}{\mathsf{l}} \overset{-}{\mathsf{l}} = \overset{-}{\mathsf{l}}$

 $u \neq \omega$ ب $u = \overline{U} = \overline{U} = \overline{U} = \overline{U}$ ب $u \neq 0$ با نام من المار با نام کار با نام کار با کا

 $\overset{\circ}{\mathcal{C}}=\overset{\circ}{\mathsf{a}}\overset{\circ}{\mathsf{b}}\overset{$

حيث ج ، د موجود صفحة ٤٧ من درس قاعدة السلسلة

التعليم ليس إعداداً للحياة ... بل هو الحباة نفسها

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الاول القسم الثاني: حلول تمارين الكتاب

السؤال الأول: احسب النهايات التالية باستخدام قاعدة لوبيتال:

فرع أ : نهي هم
$$--$$
 سيخدم قاعدة لوبيتال) فرع أ : نهي المباشر أبر سيخدم قاعدة لوبيتال) فرع أ $-$ سيخدم قاعدة لوبيتال)

$$\frac{1-1\times\frac{1}{\sqrt{1}}}{\frac{1}{\sqrt{1}}} = \frac{1}{\sqrt{1}}$$

$$\bullet = (1-1) = 1 \times (1-1) \times \omega = (a^{1-1}-1) \times (1-1) = \bullet$$

الحل
$$=$$
 $=$ $\frac{1-جتاس}{7000}$ (بالتعویض المباشر $=$ نستخدم قاعدة لوبیتال)

السؤال الثاني: جد عص في كل مما يأتي السؤال الثاني:

الحل
$$\frac{z^{m}}{z} = a^{m} \times -$$
جاس + ه \times جتاس

$$0 = \lim_{\eta \to 0} \frac{1}{\gamma} = \frac{1}{\gamma} \lim_{\eta \to 0} \frac{1}{\gamma} = \lim_{\eta \to 0} \frac{1}{\gamma} \lim_{\eta \to 0} \frac{$$

$$\frac{1}{m\gamma} = \frac{1}{m} \times \frac{1}{\gamma} = \frac{ms}{ms}$$

$$\bullet < \omega = \frac{m}{m}$$
 ه $\frac{m}{m}$ ه $0 = \infty$

$$\frac{1}{\sqrt{\frac{1}{2}}} = \frac{1}{\sqrt{\frac{1}{2}}} = \frac{1}{\sqrt{\frac{1}$$

حل إخر فرع جه :

$$\frac{1}{|\text{Let}|} = \frac{1}{\sqrt{1 - \frac{1}{2}}} = \frac{1$$

احسب قيمة الثابت ا

$$\frac{1}{\sqrt{2}} \frac{\Delta^{00}}{\Delta^{00}} = \frac{7}{4} \Rightarrow \frac{U(7) - U(1)}{7 - 1} = \frac{7}{4}$$

$$\frac{7}{\sqrt{2}} \frac{A^{00}}{\sqrt{2}} = \frac{7}{4} \Rightarrow \frac{7}{\sqrt{2}} = \frac{7}{4}$$

$$\frac{7}{\sqrt{2}} \frac{A^{00}}{\sqrt{2}} = \frac{7}{4} \Rightarrow \frac{7}{\sqrt{2}} = \frac{7}{4}$$

$$\frac{7}{\sqrt{2}} \frac{A^{00}}{\sqrt{2}} = \frac{7}{4} \Rightarrow \frac{7}{\sqrt{2}} = \frac{7}{4}$$

 $\overline{egin{array}{c} egin{array}{c} egin{arr$

الحل
$$\overline{\overline{D}} = 7$$
س + ه $\overline{\overline{D}}$ (نعوض بالمعطى)

$$($$
 بالمعطى $)$

$$\bullet = \sqrt[m]{a} - \sqrt[m]{1 - \sqrt{m}} + \sqrt[m]{a} + \sqrt[m]{a}$$

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الاول السؤال الخامس : أثبت باستخدام قاعدة لوبيتال أن :
$$\frac{m}{m} - \frac{1}{2} = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}$$

ملاحظة: عند القسمة نطرح الأسس

$$r \rightarrow r \frac{v}{r} = \frac{r}{r-r} \frac{r}{r} \frac{v}{r} = \frac{v}{r}$$

$$\sqrt{1} = (1)$$
باستخدام قاعدة لوبیتال علما بأن $\sqrt{1} = \sqrt{1} + \sqrt{1} + \sqrt{1} + \sqrt{1} = \sqrt{1}$ باستخدام قاعدة لوبیتال علما بأن $\sqrt{1} = \sqrt{1} + \sqrt{1} + \sqrt{1} + \sqrt{1} + \sqrt{1} = \sqrt{1}$

الحل
$$\frac{1-\upsilon(m)}{m-1}$$
 (بالتعویض المباشر $\frac{1-\upsilon(m)}{m-1}$ نستخدم قاعدة لوبیتال)

$$\boxed{T} = T - T = (1) \mathcal{U} - (1) \mathcal{U} = \frac{(\omega) \mathcal{U} - (1) \mathcal{U} \times 1}{1} \underbrace{- \mathcal{U} \times 1}_{1 \times 2} = 0$$

القسم الثالث: اسئلة اثرائية

قاعدة لوبيتال ، ومشتقة الاقتران الاسي واللوغاريتمي

الجواب	اختر الاجابة الصحيحة	#
ب	(•) = ه + لو (س + ۱) ، فإن ق (•) = (۱) الله عن	1
7	اذا کان ق (س) = لو ه س – لو (ه س + ۱) ، فإن ق (\cdot) = $\frac{1}{1}$ ب ب (\cdot) ب ا – لو ۲ ج) – ۱ د (\cdot) ب ا (\cdot) با (\cdot) ب	۲
٤	إذا كان $ ص = $	*

<u>_</u>	القصل الاول	للفرع العلمى-	الثاني عشر	لرياضيات الصف	تعليمية في مبحث ا	لسلة النخبة اا
j					$=\frac{\frac{7}{1+200}}{\frac{1-2}{1+200}}$	- t ← t
		۲- (ع	<u>1-</u>	(ē	<u>'</u> (÷	۲(۱)

الجواب	أجب عن الأسئلة الاتية	#
o_	اذا کانت نہے $\frac{Y^{w} + w^{v} - v^{v}}{w} = 1$ جد قیمة $\frac{1}{2}$	•
١٤_	اذا کانت نہے $\frac{\gamma}{\zeta}$ س $\frac{\gamma}{\zeta} = \frac{\gamma - (\gamma - \gamma) - \gamma}{\xi - \gamma} = -\gamma$ جد قیمة م؟	*
<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	$\frac{\xi - \left(- \left(- \frac{1}{2} \right) + \frac{1}{2} \right)}{1 - \frac{\pi}{2}}$ اوجد نها	٣

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
$ \begin{array}{c} 1 \cdot \\ \overline{0} \\ \overline{0} \\ \overline{0} \\ 0 \end{array} $	جد النهایات التالیة علما بان قَ $(\cdot) = \cdot 3$ ق $(w) = 7$ $\frac{(w) + (w) - (w) - (w)}{(w) + (w)}$ $\frac{(w) + (w) - (w)}{(w)}$	`
1 ± = ₹	اذا کان نہیا $\frac{(m+1)^{\circ}-777^{\circ}}{(m+1)^{7}-100}$ جد قیمة ۱?	+

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

أ. سليم السيقلي

اعداد

الوحدة الاولى / حساب التغاضل

الدرس السادس تطبيقات هندسية وفيزيائية

القسم الأول: الملخص

1. اذا كان الاقتران ق(س) اقترانا قابلا للاشتقاق عند النقطة (m_1, m_2, m_3) فان ميل المنحنى عند فالنقطة أهو ميل المماس ، ويساوي $m_2(m_1)$ ويعرف العمودي على منحنى الاقتران بانه العمودي على المماس للمنحنى عند نقطة التماس.

- 1-= ميل المماس imes ميل العمودي
- ع. ميل المماس = v (س) = ظاه حيث ه الزاوية التي يصنعها المماس مع الاتجاه الموجب لمحور السبنات

٥. ميل العمودى المرسوم لمنحنى الاقتران ص
$$= (m)$$
 عند النقطة $(m, 3m)$ الواقعة عليه يساوي $\frac{1}{2}$ ميل العمودى المرسوم لمنحنى الاقتران ص $\frac{1}{2}$ $\frac{1}{2$

$$(m-m)$$
 ونقطة التماس (س، ص $m-m$) معادلة المماس بمعلومية الميل (م) ونقطة التماس (س، ص، ص

$$= \frac{3 \dot{\omega}}{3 \dot{\omega}} = (\dot{\omega})$$
 عند الزمن ن هي ع $= \frac{3 \dot{\omega}}{3 \dot{\omega}} = \dot{\omega}$ السرعة اللحظية (ع) عند الزمن ن هي ع

لكي ننجح علينا أولاً أن نؤمن أنه بمقدرونا تحقيق النجاح.

القسم الثاني: حلول تمارين الكتاب

السؤال الأول: جد النقطة / النقاط على منحنى $v(m) = m^7 - 7m + 1$ ، التي يكون عندها المماس للمنحنى عموديا على المستقيم v(m) = v(m)

الايجاد ميل المماس يجب ايجاد ميل العمودي

من معادلة المستقيم m + 7m + 3 = 0

(1, 1) = (1, 1) = (1, 1) النقطة هي (1, 1) = (1, 1) = (1, 1) النقطة هي (1, 1) = (1, 1)

 $\frac{\pi}{4}$ السؤال الثاني: جد معادلة المماس لمنحنى $\sigma(m) = \Upsilon$ ظ γ

الحل عندما
$$m=\frac{\pi}{2}$$
 بالتعويض

$$\left(\Upsilon_{\epsilon}\frac{\pi}{\xi}\right) = \left(W_{\epsilon}\right)$$
 فقطة التماس هي $\left(W_{\epsilon}\right) = \left(W_{\epsilon}\right) = \left(W_{\epsilon}\right)$ فقطة التماس هي W_{ϵ}

$$\frac{\pi}{\xi} = \omega$$
الميل $= \sigma^*(\omega) = -\Upsilon$ ظاس \times قا * س بالتعويض عن $\omega = -\Upsilon$

$$\frac{\pi}{\xi}$$
ميل المماس = $\sigma = \left(\frac{\pi}{\xi}\right)$ حقا $\sigma = \frac{\pi}{\xi}$ ميل المماس

$$\xi - = \Upsilon \times 1 \times \Upsilon - = \left(\frac{1}{\frac{\pi}{\xi}}\right) \times 1 \times \Upsilon - = \frac{1}{\xi}$$

معادلة المماس هي:
$$\omega-\omega_{\scriptscriptstyle \parallel}=\gamma \left(\omega-\omega_{\scriptscriptstyle \parallel}
ight)$$

$$\left(rac{\pi}{\xi}-\omega
ight)$$
بالتعويض عن النقطة والميل : $\omega-\gamma=1$

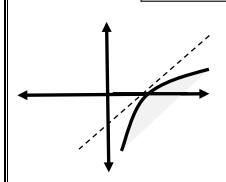
$$7+\pi+\omega\xi-=\omega$$

السؤ ال الثالث: اذا كان المماس لمنحنى $\sigma(m) = L_0 \frac{m}{\sqrt{2}}$ عندما m=1 يقطع محوري السينات والصادات في

النقطتين ب ،ج على الترتيب ، جد مساحة المثلث م ب ج ، حيث م نقطة الأصل .

مساحة المثلث $=rac{1}{7} imes$ القاعدة imesالارتفاع

معادلة المماس هي :
$$ص-ص_{\scriptscriptstyle \parallel}=\gamma ig(m-m_{\scriptscriptstyle \parallel} ig)$$
 ، بالتعويض عن النقطة والميل : $m-m = \gamma ig(m-m_{\scriptscriptstyle \parallel} ig)$


$$\boxed{1 - m \frac{1}{7} = m}$$

الايجاد نقطة تقاطع المستقيم مع محور السينات (المقطع السيني) نضع ص = ٠

$$\gamma = rac{1}{7} - rac{1}{7}$$
 ومنها النقطة $\gamma = \gamma$

$$0 = \frac{1}{7} \times 0$$
 ومنها النقطة $0 = \frac{1}{7}$

مساحة المثلث = نصف القاعدة \times الارتفاع = $\frac{1}{7} \times 7 \times 1 = 1$ وحدة مساحة

 $\Upsilon
eq N$ همستقيم $M=\{-1,0\}$ يمس منحنى الاقتران $M=\{-1,0\}$ همستقيم $M=\{-1,0\}$ همستقيم منحنى الاقتران $M=\{-1,0\}$ جد قيم ١ ؟

لايجاد قيم ا يجب ايجاد قيم (س،ص) من خلال مماسا يمس 🕳 ميل المماس = ميل المستقيم

أو لا: ابجاد مبل المماس

$$\boxed{1} \dots \frac{7-\sqrt{7-7-m}}{\sqrt{7-7-m}} = \frac{\sqrt{7-7-m}}{\sqrt{7-7-m}} = (\sqrt{7-7-m})$$

$$\boxed{\Gamma} = \frac{-\sqrt{1-2}}{\sqrt{1-2}}$$
 حيث $\frac{1-\sqrt{1-2}}{\sqrt{1-2}} = \frac{-\sqrt{1-2}}{\sqrt{1-2}}$ حيث $\frac{1-\sqrt{1-2}}{\sqrt{1-2}} = \frac{1-\sqrt{1-2}}{\sqrt{1-2}}$

من المعادلتين []ء [ميل المماس = ميل المستقيم

$$\xi - \zeta \Lambda = \sqrt{\omega} \iff \exists \pm = \Upsilon - \sqrt{\omega} \iff \Upsilon \exists = \Upsilon (\Upsilon - \sqrt{\omega})$$

عندما س = ۸ فان

$$\xi = \frac{\Lambda \times \Upsilon}{\Upsilon - \Lambda} = (\Lambda) \upsilon = (\omega) \upsilon$$

وبالتالي النقطة (٨، ٤) وهي تحقق معادلة المستقيم

$$w=1-7$$
 اذن : $+ -7 = 1$ $+ + 7 = 1$

وعندما س,
$$=-3$$
 فان $\mathbf{Y} = \frac{\mathbf{Y} \times \mathbf{Y}}{\mathbf{Y} - \mathbf{\xi} - \mathbf{Y}} = \mathbf{Y}$ و $\mathbf{Y} = \mathbf{Y} \times \mathbf{Y} \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} = \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} = \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} = \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} \times \mathbf{Y} = \mathbf{Y} \times \mathbf{Y$

السؤال الخامس: قذف جسم رأسيا الى أعلى وفق العلاقة ف $= \cdot ٤ ٥ - ٥ ٥ ، حيث ف ارتفاعه بالأمتار ، ن$

لايجاد السرعة يجب ايجاد الزمن من خلال المسافة الكلية ف = ١٠٠٠ م

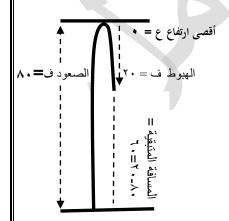
بالثواني ، جد سرعة الجسم عندما تكون المسافة الكلية المقطوعة ١٠٠ م

ولكن يجب فصل زمن الصعود عن زمن الهبوط ، لا يجاد زمن الصعود من خلال أقصى ارتفاع بصل اليه الجسم ع(ن)= ٠

$$^{\mathsf{Y}}$$
 ان $^{\mathsf{Y}}$ ان $^{\mathsf{Y}}$ ان $^{\mathsf{Y}}$ ان $^{\mathsf{Y}}$

$$\iota = \iota$$
 $\iota - \xi \cdot = (\iota)$ $\iota = \iota$ $\iota = (\iota)$ $\iota = (\iota)$

$$\leftarrow \sim \sim \pm 1$$
 (زمن الصعود)


$$^{\mathsf{r}}$$
 هن (\mathcal{S}) هن (\mathcal{S}) هن (\mathcal{S}) هن (\mathcal{S}) هن (\mathcal{S}) هن (\mathcal{S}) هن (\mathcal{S})

$$\leftarrow$$
 الصعود (عند $\dot{v} = \dot{v}$ ، $\dot{v} = \dot{v}$ ، المبوط = ١٠٠ – ٢٠ هر \dot{v}

ولكن المطلوب هو سرعة الجسم عند ف = ١٠٠٠ م و من ملاحظة الشكل فان السرعة عندما المسافة = ١٠٠٠ م مساوية

السرعة عندما ف $= 1 \cdot \cdot = 1$ السرعة عندما ف $= 7 \cdot 7$ ولكن بعكس الإشارة

$$\cdot = 17 - \nu \Lambda - \nu \sim$$

السؤال السادس: من نقطة على سطح الأرض قذف جسم رأسيا الى أعلى ، وكان ارتفاعه ف بالأمتار بعد ن من الثواني يعطى بالعلاقة ف = • ٣٠ س – ٥٥ ، فسقط على سطح بناية ترتفع • ٤ م ، جد :

فرع أ: أقصى ارتفاع يصل اليه الجسم

اقصى ارتفاع وهي عندما ع
$$(v)$$

الحل

$$3(N) = \vec{i} = (N)$$

 $3(N) = \vec{i} = (N)$
 $3(N) = (N) = (N)$
 $3(N) = (N)$
 $3(N) = (N)$
 $3(N) = (N)$
 $3(N) = (N)$

أقصى ارتفاع وهي عندما
$$\omega= au= au= au= au$$
 ف $= au= au$ أقصى ارتفاع وهي عندما

فرع ب: سرعة ارتطام الجسم بسطح العمارة

$$\xi \cdot = {}^{\mathsf{T}} \mathsf{NO} - \mathsf{NT} \cdot \Leftarrow \xi \cdot = \mathbf{i}$$

الحل

$$\begin{array}{l}
\cdot = \Lambda + \nu \Im - {}^{\Upsilon} \nu \iff \cdot = \xi \cdot - {}^{\Upsilon} \nu \circ - \nu \Upsilon \cdot \\
\cdot = (\xi - \nu)(\Upsilon - \nu) \iff \\
\xi = \nu \cdot \Upsilon = \nu \iff \\
\end{array}$$

$$\omega = \xi \Longrightarrow -1$$
 مرث في لحظة النزول $\omega = \xi$

القسم الثالث: اسئلة اثرائية

تطبيقات هندسية وفيزيائية

الجواب		ختر الاجابة الصحيحة			#
	٠) هي :	ى ق(س) عند النقطة (٣،	لة العمودي على منحنو	إذا كانت معادا	•
ح			• فإن قد · (٣)=	۲س-۳ص=۱	
·	د) ٣- د	$\frac{7}{4}$ – (*	ب) ۲	y (1	
	قيمة أ تساوي	نحنی ص = س ۲ + افإن	قيم ص= س مماسا لم	إذا كان المستذ	۲
÷	د) صفر	<u>₹</u> (÷	<u>۱</u> (ب	Y (1	

د ول	التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل ال	النخبة	لسلة
	إذا كانت معادلة العمودي على ماس منحنى الاقتران ق(س) عند النقطة (٣،١)	٣	
7	هي $\omega = rac{1}{4} $ س		
	$\frac{1}{2}$ (2 $\frac{1}{2}$ (÷ $\frac{1}{2}$ († $\frac{1}{2}$		
ب	إذا كانت معادلة العمودي على المماس لمنحنى الاقتران ق (س) عند النقطة (17) ، ب) هي أص = س، وكانت ق (17) = (17) ، فإن الثابت ب =	٤	
	أ) - ٦ ب ب - ٢ ج) ٢ د) ٦ إذا كانت معادلة العمودي على منحنى الاقتران ق (س) عند النقطة		
÷	و ي و عليه هي : س + ۲ ص = ٥ فإن ق (1) تساوي :	٥	
	$\gamma = (7)$ $\lambda = \frac{\lambda}{1-}(\dot{\gamma})$		
f	إذا كان المستقيم $m = 7$ س _ 1 مماساً لمنحنى الاقتران ق(س) عند $\frac{5}{100}$ نها $\frac{5}{100}$ = $\frac{5}{100}$ النقطة (۲ ، ۵) ،فان ه $\frac{5}{100}$.	٦	
	i) ۳ (ب) ؛ جا صفر د) ه		
€	إذا كان المستقيم ص = س مماساً لمنحنى ص = $\frac{m^2}{3}$ + جـ ، فإن قيمة جـ =	٧	
	ر) - (ب ۲ – (ا		
	قذف جسم رأسياً إلى أعلى بحيث يقاس ارتفاعه حسب العلاقة	٨	
ĵ	ف = ؛ أن _ ٢ن٢، أ> • إذا كان أقصى ارتفاع وصله الجسم ٣٦ متراً ،		
	فإن قيمة أهي: أ) ٤ ب) ٨ ج) ١٦ د) ٣٢		
	إذا كان المستقيم ص = ١ - ٥س مماساً لمنحنى الاقتران ق(س) عند	٩	
f	النقطة (٢، ـ ٩)، فإن: هـ ، هـ ، هـ =		
	ا) ـ ١٥ (ع ب) - ٥ (ع ب) ١٥ (١		

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

أ. سليم السيقلي

<u> (ول</u>	فرع العلمى– الفصل الا	<u>ى</u> الثاني عشر لل	بحث الرياضيات الص	التعليمية في م	النخبة	لسلة ا
f	ران	ماساً لمنحنى الاقتر ب هي :	نیم ص = ٥س+ ب م ' + س -١ فأن قیمة ،	إذا كان المستفق ق(س)=٢س	١.	
	4 (7	, (÷	ب) - (ب	اً) ۳		
ب	انقطة (١٥٥/)	المنحنى ق(س) عند	م ص-۳س-۲=۰ مماس (۱+0هـ) — ٥ هـ	اذا كان المستقي خما في في المستقيا	11	
	o-(7	ج)،	ب)ه۱	1)07		
د	لحظة يعطي بالعلاقة ، وصول الجسم لأقصى		[*] 心1 7 –	قذف جسم رأس ف = ۰ ۸ ۱۵-	17	
	د) ۲٫۰ ثانیة	ج)٣,٥ ثانية		ارتفاع يساوي أ) • ثانية		

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
<u>97—</u> 77	اذا کان المستقیم $عس - 7$ $m = \Lambda$ یمس منحنی ق(س) عند النقطة $m = 1$ وکان المستقیم $m = 1$ عمو دیا علی مماس المنحنی ل عند النقطة $m = 1$)، جد	
	المسلقيم	1
1-61-67	اذا كان ق $(m) = m^{7} + 9m + p$ يقطع منحنى ه $(m) = m^{7} - p$ عند النقطة $(7 < 1)$ ولهما نفس المماس عند تلك النقطة ، ما قيم $(7 < 1)$ ولهما نفس المماس عند تلك النقطة ، ما قيم $(7 < 1)$	۲
١٥	جد مساحة المثلث المكون من المماس المرسوم من النقطة (\cdot, \cdot) لمنحنى الاقتران ق $(m) = m^{-n} + m$ والعمودي على المماس عند نقطة التماس والمستقيم ص $= 1$?	٣
	اسقط جسم سقوطا حر من على برج ارتفاعه (١٨٠م) حسب العلاقة	
\ \	العلاقة ف $_{\gamma}=10+00$ اذا وصل الجسمان سطح الارض في نفس اللحظة ، جد قيمة 4 ؟	٤

الاول	ة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمى - الفصل	سلسلن
	اسقط جسم للاسفل من سطح عمارة سقوطا حرا وفق العلاقة ف $7 = 7 + 1 ext{V}$ وفي اللحظة	
	نفسها رمى جسم اخر للاسفل بسرعة ابتدائية مقدارها ٢٠ م/ث وفق العلاقة	
۱. $eta_{7} = \lambda$ قدم $eta_{7} = \gamma$ قدم $eta_{7} = \gamma$ وقدم	$\omega_{\gamma} = 7 + 7 + 7 + 1$ اذا ارتظم الجسم الاول بعد $\frac{1}{7}$ ثانية من ارتظام الجسم	٥
۲. ۳۳ قدم	الثاني بالارض ،جد:	
	١) سرعة كل من الجسمين لحظة ارتطامهما بالارض .	
	٢) ارتفاع العمارة.	
	من نقطة على سطح الارض اطلق جسم لاعلى حسب العلاقة ف $= 0.1$ 0	
۱. ۱ م	فسقط على سطح بناية ارتفاعها (٢٤م) سطح الارض جد:	
۲. ۲ م/ث	١) اقصى ارتفاع يصله الجسم من سطح العمارة	٦
	٢) سرعة ارتطام الجسم بسطح البناية .	•

الوحدة الاولى / حسابم التغاضل

الدرس السابع / قاعدة السلسلة

القسم الأول: الملخص

۱- اذا كانت ص = ق (ع) ، ع = ه (س) اقترانين قابلين للاشتقاق ، ص = ق (هـ (س)) ، وبالتالي : فان $\frac{z - 0}{z - 0} = \frac{z}{z - 0}$ فان $\frac{z - 0}{z - 0} = \frac{z}{z - 0}$

٢ ـ قاعدة السلسلة:

اذا كان هـ(س) اقترانا قابلا للاشتقاق عند س ، وكان ق (س) اقترانا قابلا للاشتقاق عند هـ (س) فأن الاقتران المركب يكون قابلا للاشتقاق عن س ، ويكون $(\mathfrak{v} \circ \mathfrak{a}) / (\mathfrak{m}) = \mathfrak{v} / (\mathfrak{a} (\mathfrak{m}))$. هـ $(\mathfrak{v} \circ \mathfrak{a}) / (\mathfrak{m}) = \mathfrak{v} / (\mathfrak{a} (\mathfrak{m}))$

 $(w)^{-1}$ اذا کان $w=(a(w))^{-1}$ و کان (w) قابل للاشتقاق ، $w\in w$ ، فان $\frac{2w}{2w}=v(a(w))^{-1}\times a^{-1}$. اذا کان (w) اقتران قابلا للاشتقاق ، فان :

اً)
$$\upsilon(\omega) = a^{\omega(\omega)}$$
 وتكون $\upsilon^{-1}(\omega) = b^{-1}(\omega)$. ه

$$\frac{(w)^{\prime}}{(w)} = (w)^{\prime}$$
 و تكون $\frac{(w)^{\prime}}{(w)} = (w)^{\prime}$ فابل للاشتقاق وتكون $\frac{(w)^{\prime}}{(w)} = (w)^{\prime}$ فابل للاشتقاق وتكون $\frac{(w)^{\prime}}{(w)} = (w)^{\prime}$

كل من توقف عن التعليم فهو كهل ، ولا يهم إن كان في العشرين أو في الثمانين من عمره ، بينما كل من لا ينفك يتعلم يظل شاباً

القسم الثاني: حلول تمارين الكتاب

السؤال الأول: جد عندما س = ۱ لكل مما يأتي:

فرع أ:
$$ص=\begin{pmatrix} w^1+w+1 \end{pmatrix}^{-1}$$
 بحل مشتقة القوس $w^2+w+1 \end{pmatrix}^{-1}$ بحل مشتقة القوس $w^2+w+1 \end{pmatrix}^{-1}$ المحل $w^2+w+1 \end{pmatrix}^{-1} \times (1+w+1)$ بالتعويض عن $w=1$ ينتج $w=1$

فرع ب:
$$\omega=m$$
 ق $\frac{\pi}{m}$ ه $m\neq m$ حاصل ضرب اقترانین

$$\left(w \times \frac{\pi}{\omega} \right) + \left(\frac{\pi}{v} \times \frac{\pi}{\omega} \right) + \left(\frac{\pi}{v} \times \frac{\pi}{\omega} \right) + \left(\frac{\pi}{v} \times \frac{\pi}{v} \right) = \frac{v \times \pi}{v}$$

$$(\Upsilon \times \pi \mathbb{I}) + (\pi - \pi \mathbb{I}) \times \pi \mathbb{I} \times \pi \mathbb{I}$$
 بالتعویض عند س $\pi = \mathbb{I}$ فان $\pi = \mathbb{I}$ فان

$$Y - = (Y \times Y -) + \cdot = \frac{\omega s}{\omega s} \Leftarrow$$

فرع ج:
$$\omega = 63^{7} - 7$$
 ، $3 = \frac{1}{\omega^{7} + 1}$ قاعدة السلسلة

$$\frac{es}{es} \times \frac{es}{es} = \frac{es}{es}$$

$$\frac{1}{\sqrt[r]{(1+\sqrt[r]{w})}} = \frac{\sqrt[r]{-r}}{\sqrt[r]{(1+\sqrt[r]{w})}} \times \frac{1}{\sqrt[r]{1+\sqrt[r]{w}}} = \frac{\sqrt[r]{-r}}{\sqrt[r]{(1+\sqrt[r]{w})}} \times \varepsilon_1 = \frac{\omega s}{\omega s}$$

$$\frac{\delta - - + \gamma}{\gamma} = \frac{\gamma \cdot - - \gamma}{\gamma} = \frac{\gamma \cdot - - \gamma}{\gamma}$$
 بالتعویض عند س = ۱ فان $\gamma = \frac{\gamma \cdot - \gamma}{\gamma} = \frac{\gamma \cdot - \gamma}{\gamma}$

$$oldsymbol{\cdot}
eq = d rac{\pi}{w} +$$
فرع د $= d = d + \pi$ جتا $^{\prime}(\pi m)$ ، س

$$[\pi-]=(\pi imes\pi$$
عندما س $=$ ۱ فان π فان π فان π فان π فان π فان π

$$\sim \sim = \left(\begin{array}{c} \Gamma \\ \Gamma \end{array} \right) = 0$$
 فرع ه : $\sigma = \left(\begin{array}{c} \Gamma \\ \Gamma \end{array} \right)$

$$\frac{1}{m} \times {}^{r}\left(-\frac{1}{m} \right) = \frac{2m}{ms} = \frac{2m}{ms}$$
 بالاشتقاق ينتج $\frac{2m}{s} = \frac{2m}{ms} = \frac{2m}{ms}$ بالتعويض عن $m = 1$ ينتج $\frac{2m}{s} = \frac{2m}{ms} = \frac{2m}{ms}$

لوم (س) السؤال الثاني : اذا كان
$$v(m) = \frac{(m)}{\gamma_m}$$
 وكان $v(n) = \frac{(m)}{\gamma_m}$ وكان ع (١) = ه ، م $v(n) = \frac{(m)}{\gamma_m}$

$$\frac{1}{\sqrt{\frac{7}{10}}} + \frac{1}{\sqrt{\frac{7}{10}}} + \frac{1$$

$$1 - \frac{1}{8} = \frac{\left(1 - \frac{1}{8}\right) \cancel{\cancel{\cancel{\xi}}}}{\cancel{\cancel{\cancel{\xi}}}} = \frac{\cancel{\cancel{\xi}} - \cancel{\cancel{\xi}}}{\cancel{\cancel{\xi}}} = \frac{1}{8} - 1$$

$$\boxed{1 - \frac{1}{8} = (1)^{2} \cancel{\cancel{\xi}}} \Leftarrow \frac{1}{8} = \frac{1}{8} - 1$$

السؤال الثالث: جد مشتقة كل من الاقترانات الاتية:

فرع أ:
$$v(\omega) = a^{w^{1+\omega}}$$

الحل
$$v'(w) = (\gamma w + 1)$$
ه w'^{+w}

فرع ب: ع (س)=لو
$$_{a}$$
 (س 7 7 7) ، 7 7 فرع ب: ع 7 (س) = $\frac{7}{m} \frac{7}{m} \frac{7}{m} \frac{7}{m}$

 $(1)^{-1}$ السؤال الرابع : اذا كان $\mathfrak{v}(m)=m^{-1}$ m=(m) ، باستخدام الجدول جد $\mathfrak{v}(m)=(m)$

(٢)//((٢)~((۲)۲
1	١-	0

 $\frac{d}{dt} \quad \text{or} \quad (m) = m^{2} \times (1 + 1) \times (m + 1) \times ($

 $(1+{}^{\mathsf{Y}}\mathsf{w})\mathsf{v}\mathsf{w}\mathsf{v}+(1+{}^{\mathsf{Y}}\mathsf{w})\mathsf{v}\mathsf{v}\mathsf{v}\mathsf{w}\mathsf{v}=$

$$\begin{bmatrix} \mathsf{T} \times (\mathsf{T}) & \mathsf{T} \times (\mathsf{T}) & \mathsf{T} \times (\mathsf{T}) & \mathsf{T} \times (\mathsf{T}) & \mathsf{T} & \mathsf{T} \times (\mathsf{T}) & \mathsf{T} & \mathsf{T} & \mathsf{T} \times (\mathsf{T}) & \mathsf{T} &$$

$$(Y) \land Y + (Y) \land (Y) \land$$

$$1 \cdot + 1 \cdot - \xi = 0 \times 7 + 1 - \times 1 \cdot + 1 \times \xi = (1)^{\ell} \upsilon$$

ξ = (\) ¹ **υ** ←

السؤال الخامس: إذا كان
$$\omega = \upsilon^{*}(\omega) - \upsilon(\omega^{*})$$
 ، جد $\frac{2\omega}{2\omega}$ عندما $\omega = \upsilon^{*}(\omega)$ ، علما بأن $\upsilon(\tau) = (\tau)$ ، $\upsilon(\tau) = (\tau)$ ، $\upsilon(\tau) = (\tau)$

$$\Upsilon=$$
الحل $\sigma=0$ $\sigma=0$ $\sigma=0$ $\sigma=0$ $\sigma=0$ $\sigma=0$ $\sigma=0$ $\sigma=0$ الحل $\sigma=0$ $\sigma=0$ $\sigma=0$ $\sigma=0$ الحل $\sigma=0$ $\sigma=0$ $\sigma=0$

$$\boxed{ \mathbf{r} \cdot \mathbf{r} } = \mathbf{r} \cdot \mathbf{$$

الملتقى التربوي

www.wepal.net

السؤال السادس : جد معادلة العمودي على المماس المرسوم لمنحنى
$$\mathfrak{C}(\mathfrak{m}) = \mathfrak{Z} - \mathrm{dir} \mathfrak{m}$$
 عندما $\mathfrak{m} = \frac{\pi}{\mathfrak{Z}}$?
$$\mathsf{T} = \frac{1}{\mathsf{T}} = \frac{\pi}{\mathfrak{Z}} \mathsf{T} = \frac{\pi}{\mathfrak{Z}$$

$$(\mathbf{r}, \frac{\pi}{\xi}) = ((\frac{\pi}{\xi})$$
 ، قر $\frac{\pi}{\xi}) = \frac{\pi}{\xi}$ ، نقطة التماس $= \frac{1}{\xi}$ ، قر $\frac{\pi}{\xi}$ ، قر $\frac{\pi}{\xi}$) $= \frac{1}{\xi}$ ، نقطة التماس $= \frac{1}{\xi}$

معادلة العمودي على المماس:
$$\omega-\omega$$
 معادلة العمودي على المماس: $\omega-\omega$ معادلة العمودي على المماس: معادلة العمودي على المماس

$$= (-1$$
 الحاس $^{7} \times 7) + (^{7} \times -7) + (^{7} \times -7) + (^{7} \times 7) +$

$$=-$$
کس 7 ص $+$ ص $^{-}$ الطرف الايسر

السؤال التاسع :
$$\upsilon(w) = w + \frac{1}{w}$$
 ، $a(w) = \pi$ ، أثبت $(\upsilon \circ a) \wedge (w) = \pi$

الحل
$$\sigma'(m) = 1 - \frac{1}{m}$$
 ، هر $\sigma'(m) = -$

$$(\upsilon \circ a)/(\omega) = \upsilon / (a(\omega)) \times a/(\omega)$$

أ. بلال أبو غلوة أ. سليم السيقلي أ. آلاء الجزار أ. آلاء البرعي

$$= \sigma^{2}(\pi^{2}) \times -\pi^{2} = \sigma^$$

السؤال العاشر : جد نها ظا(٢س + هـ) -ظا٢س د مها

$$\frac{d}{d} = \frac{d}{d} = \frac{d}{d}$$

السؤال الحادي عشر: اذا كانت ق(س)، هـ(س) اقترانيين قابلين للاشتقاق وكانت

$$\bullet = (\upsilon)^{3} \times (\omega)^{3}$$
 ، اثبت أن $: \frac{\omega}{\omega} = \gamma \left(\frac{\omega}{\upsilon} + \frac{\omega}{\omega}\right)$ ، حیث $\gamma \neq 0$ ، ق(س) ، ه(س) $\omega \neq 0$

$$^{\uparrow}((\omega))^{\uparrow}\times((\omega))^{\uparrow}$$
الحل ص

$$\mathcal{O} = (\mathcal{O}(m) imes \mathbb{A}(m))^{-1}$$
 بأخذ اللوغاريتم للطرفين .

$$=$$
البو $[\mathcal{U}(\mathcal{W}) \times \mathcal{A}(\mathcal{W})] =$

$$\frac{\omega}{\omega} = \frac{\sigma}{\sigma} + \frac{\delta}{\sigma} + \frac{\delta}{\sigma}$$
 (بإشتقاق الطرفين)

$$\left[\frac{\omega}{\omega} + \frac{\omega}{\omega}\right] = \frac{\omega}{\omega}$$

القسم الثالث: اسئلة اثرائية

قاعدة السلسلة

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
Í	$= (1)^{\prime}$ (ق $= (m) = 7$ هـ $(m) = 7$ هـ $(m) = 1$	•
	ر) - ۱ (ب ب ا ب ا ب ا	
	$- \frac{1}{1}$ اذا کان $(w) = 7$ $+ w - 1$ ، ه $(w) = \sqrt{w}$ فإن (ق ه هـ) $(\frac{1}{2}) = \sqrt{w}$	۲
7	$\mu (7) \qquad \frac{\lambda}{l} (\Rightarrow \frac{\lambda}{l-l} (\Rightarrow \lambda - l)$	
í	إذا كان ق (س) قابلاً للاشتقاق وكان ق (س + ۱) ـ س = صفر ، فإن ق $(9) = $	٣
)	اً) ای جا صفر د) ۳۳ (ا	
	إذا كان ق (س) = س٢ ، فإن (ق٥ ق١)١ (١) =	٤
7	۱) ۲ (غ ج) ۲ (۱) ۸	
	$(m)=1$ هـ (\sqrt{m}) ، وكان هـ $(m)=7$ ، ق $(m)=7$ ، ق $(m)=7$ ،	٥
Í	فإن قيمة الثابت أ =	
	$\frac{1}{\gamma}$ (2) (\Rightarrow $\frac{\xi}{\gamma}$ (φ) (1)	
	اِذَا كَانَ (ق هـ) /(٢) = ٢٧ ، حيث ق (س)= س٢ ـ ٥ س ، هـ / (٢) = ٣ ،	٦
د	فٰإِن هـ (٣) =	
	ر) ۱۱ (ټ کا ۱۹ کا ۱۹	
	ر ا کان (ق ٥ هـ)(س) = س وکانت ق/ (س) =	٧
د	حيث هـ قابل للاشتقاق فإن هـ /(س) =	
	أ) ١ (س) ج) ق (س) د) هـ(س)	

	$7 + 7 \omega = \sqrt{7 + 7} \omega = \sqrt{1 + 7} \omega = 1 + $	٨
ب	<u>احل</u> فان ^{وص} عندما ص = ۱ هي :	
	ر) ۱ (ب کا این کا ا از کا کا این	
	إذا كان (ق ٥ هـ) $^{\prime}$ (٣) = ٨ ، وكان (ق $^{\prime}$ ٥ هـ) (٣) = ٢ فإن هـ $^{\prime}$ (٣) تساوي :	٩
ب	اً) ۲ ب ب) ٤ ج) ۸ د) ۲ <i>۲</i>	
E	$= (m) = \frac{1}{m^2 - 7m + 9}$ ، س $\neq m$ ، فإن ق $m = (m)$	١.
	أ) = ق (س) ب ا ت ق (س) ج ا ت ق (س) د) ق (س)	
	$= \sqrt{\Upsilon + \cdot \cdot \cdot \cdot}$ فه $(w) = 9 - \Upsilon $ فإن $(v \circ a)'(\Upsilon) = 0$	11
٦	$\frac{\Psi^{-}}{\xi} (z) \qquad \frac{\Psi}{\xi} (z) \qquad \frac{\Psi^{-}}{\eta} (z)$	
	اِذَا كَانَ قَ (س) = ${1 \over 4}$ س ، هـ(س) = جتاس ،(ق ٥ هـ) ${\pi \over 7}$ = ١ فَانَ قَيمة الثابت	17
Í	ا تساوى:	
	۱) - ۱ (۱ ب $\frac{7}{\pi}$ ب ب $\frac{7}{\pi}$	
Í	إذا كان ق(س) = هـ $^{-1}$ _ لوم (٢س +٢) حيث هـ عدد نيبيري فإن ق $^{\prime}$ (٠)	١٣
,	۱ - (ع ب ۲٫۰ ب ۲٫۰ ب ۲٫۰ ۱ ب ۲٫۰ ب ۲٫۰	

اعداد

	العلمى الفصل الاول	عشر للفرع	الصف الثاني	حث الرياضيات	التعليمية في مد	سلسلة النخبة
--	--------------------	-----------	-------------	--------------	-----------------	--------------

٦	اذا کان ق (m) =ظالاس فأن نهي $\frac{\ddot{b}(\pi+a)-\ddot{b}(\pi)}{a}$	١٤
	أ) غير موجودة ب) - ٢ ج) صفر د) ٢	
	$\frac{m m - m}{m + m} \underbrace{(m - m)}_{m \to m}$	10
1	۱) ۶۰ (۲ - ۲ ع ه) ۸۰ (۲ ا	
Í		١٦
	اً) ۲ (ع ج) ۳ (ج ۲ (أ	
Í	(1) Y (2) (3) (4) (5) (7)	
,	(۱) -جاعس جا۲س ب) γ جا γ س جا γ س جا γ س جاعس جا γ س جاعس الم	1 🗸
٦	$=\left(rac{\pi}{\xi} ight)$ اذا کان فہ (m) $=$ جا γm ، فأن فہ $\left(rac{\pi}{\xi} ight)$ ہور راہد ا	١٨
	٤-(ع ۲(ج و ۱۸(۱	
د	ه (س ۲ – ۲)	19
	اً)٠٤ ب ٢٠ ج) ١٠٠ د)-٢٠	
د	$1 \cdot \cdot$	۲.
	اً)-۲ ب)-٤ ج)٤ د)۲	
	$=$ اذا کان فہ $\left(m^{7}-1 ight)=7$ س $^{2}-1$ ی فأن فہ $^{2}-1$	71
ب	اً) ۱۲ (ب) ٤ ج) - ٤ د) - ۲ (

Ш		
الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
	بین أن الاقتران ص = (۱ + ۲س) هـ س یحقق المعادلة $\frac{c \cdot m}{c \cdot m} + 9$ ص = صفر $\frac{c \cdot m}{c \cdot m} - 7$	•
<u>۲ه " '</u> س + ٤س ه ^{س ۲} لــو س	$\frac{co}{ \dot{c} } = a^{m^{\gamma}}$ اوجد $\frac{co}{co}$	۲
ص = ٤ س _ ه	إذا كان ق (س) = ل(س $^{7}+1$) ، لَ (٥) = ١ ، ل(٥) = ٣ جد معادلة المماس لمنحنى ق (س) عندما س = ٢ .	٣
٣_	دص $(3^n - 7^n + 3^n)^n$ ، ع س $= 1$ ، جد $\frac{1}{2}$ عندما س $= 1$	£
	اذا کان $\sqrt{m} = \frac{m}{m-1}$ ، أثبت أن : $m^2 = m^2$ ($m-1$)	٥
477	إذا كان ق (س) = س" +۲، هـ(س)= س٢ + ٣ ،جد (ق٥ هـ) " (٢)	٦
صفر	إذا كان المماس لمنحنى الاقتران ق (س) = (س + $\frac{7}{m}$) عند س = ٢ يمر بالنقطة (أ، ٠) فاحسب قيمة أ	Y
٣٦_	$(i 2) $ اذا كان $\widetilde{\mathfrak{g}}(\mathfrak{o}) = 7$ فجد نهي $\widetilde{\mathfrak{g}}(\mathfrak{o} - 7)$ ه	٨
1 1 1	اِذَا کَانَ قَ (Y س $Y = 1) = \sqrt[n]{(m+r)^2} ، m > mفاحسب نها \frac{\ddot{b}(Y) + \ddot{a}(Y)}{\ddot{a}(Y) + \ddot{a}(Y)}$	٩
	اذا کان س = 3^{1} ، ص $1 = 3 + 1$ فأثبن ان $1 + 2$ س ص $\frac{2^{0}}{2^{0}} = 0^{1} - 1$	1.
ب = -,	اذا کان ق(س) = $7 m^7 + p m$ ، وکان (ق	11

أ. بلال أبو غلوة أ. سليم السيقلي أ. آلاء الجزار أ. آلاء البرعي

	اذا كان ق قابلا للاشتقاق ، فأثبت أن :	
	\tilde{b}	, ,
	(w) نہے $\frac{3 v(w) - 3 v(w)}{a} = v(w) - w \overline{v}(w)$	
٦-	اذا کان $ 7 \overline{ ar b} (7) = 3 7 $ فجد $ 3 + \frac{ \overline{ b} (7) - \overline{ b} (7) }{ 3 + } $ هم	١٣
	اذا کان ص = جا هه، س = قتا هه، أثبت أن : $\frac{c^7 ص}{cm^7}$ + ۲ ص $\frac{c - c}{cm}$ = صفر	١٤
	اذا کان $\omega = 1$ جا $\gamma m - \psi$ جتا γm اثبت ان $(\omega)^{\gamma} + 3 \omega^{\gamma} = 31^{\gamma} + 3 \psi^{\gamma}$	10

القسم الرابع :اسئلة تفوق

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
	اذا کان $\omega = a^{-w} \sqrt{\frac{w+1}{w-1}}$ ، بین ان $(1-w^{\gamma})^{\omega} = w^{\gamma} \omega$	•
	$\frac{1}{W} = \frac{23}{2}$: اذا کان $3 = \frac{\omega + 1}{\omega - 1}$ ه $\frac{3}{W} = \frac{3}{2}$ اثبت ان $\frac{3}{2}$	۲
	اذا كانت معادلة المماس لمنحني ه (س) عند س=١ هي ص=٣س٥، احسب	٣
$(1-\omega)\frac{1}{1} = \lambda + \omega$	معادلة العمودي على المماس لمنحنى الاقتران ق(س) عند س= ١ بحيث ان :	
, ,	$\mathfrak{S}(w) = (w)^{r} \mathfrak{a}(w)^{r}$	
	(m) (m) (m) اذا كان القطة س $=$ اقترانين قابلين للاشتقاق عند النقطة س	٤
۸–	T = (1) / (1) = -1 کان $T = (1) / (1) = 7$ کان $T = (1) / (1) = 7$ احسب	
	$1 = \omega = \frac{\left((0)^{1} \cdot (0)^{1} \cdot (0) \cdot \frac{S}{MS} \right)}{2}$	

گراساة الكاماء

الوحدة الاولى / حسابم التغاضل

الدرس الثامن الاشتقاق الضمني

القسم الأول: الملخص

1- في حالة ليس من السهل كتابة ص بدلالة س ، فنسميها علاقة ضمنية ، ونجد $\frac{congle of congle of c$

٢ إذا كان:

$$1-\frac{1}{\sqrt{2}}$$
 م ہ ہ $\frac{1}{\sqrt{2}}$ م ہ ہ $\frac{1}{\sqrt{2}}$ م ہ ہ $\frac{1}{\sqrt{2}}$ م ہ ہ ہ خون م

$$\frac{\tilde{a}(m)}{\tilde{b}} = \sqrt{\tilde{a}(m)}$$
 ، $\tilde{a}(m) > 0$ فإن $\tilde{a} = \sqrt{\tilde{a}(m)}$ ب

التعليم هو أقوى سلاح من الممكن استخدامه لتغيير العالم

القسم الثاني: حلول تمارين الكتاب

السؤال الأول : جد $\frac{2 \, \omega}{2 \, \omega}$ لكل مما يأتي:

$$o = {}^{1}$$
فوع أ : $m + {}^{2}$ س $m + {}^{3}$

$$m + \overline{m - 1}^{\circ} = m = m + m$$
فرع ب: ص

فرع جه: ص = جا (س + ص)

$$(w+\omega) \times (w+\omega) + \omega$$
 $= \pi i (w+\omega) + \omega$ $= \pi i (w+\omega) + \omega$ $= \pi i (w+\omega)$

$$(w+w) = \pi (w+w)$$

$$(\omega + \omega) = \pi i (\omega + \omega)$$

$$\frac{+\pi^{2}(m+\omega)}{(n+\omega)}$$
 $=$ ω

 $\Upsilon = \frac{1}{\omega} + \frac{1}{\omega} : \frac{1}{\omega}$ فرع د

اعداد

$$\Upsilon = ^{-}$$
 الحل $^{-}$ $^{-}$ 0

$$\frac{r}{r} \frac{d}{dr} - \frac{1}{r} \frac{dr}{dr} = \frac{1}{r} \frac{1-r}{r} \frac{1-r}{$$

السؤال الثاني : جد معادلة العمودي على منحنى $\omega=m^{-1}-m$ m=0 ، عند كل من نقطتي تقاطعه مع الدائرة التي معادلتها m=0 m=0 m=0

الحل لكي نجد معادلة العمودي لابد من توفر ميل العمودي ونقطة كالتالي:

أولا/ نوجد نقطة تقاطع المنحني مع الدائرة: -

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

بالتعويض في معادلة الدائرة س 7 - 7 س + 0 7

$$\omega = 0 + \omega$$
 $\omega = 0 + \omega$ $\omega = 0 + \omega$

عندما ص = - وبالتالي س 7 - 7 عندما ص 7 - فلا يوجد حلول عندما ص

عندما ص = ه فان
$$\circ = m^{7} - mm + \circ$$
 وبالتالي $m^{7} - mm = • ⇒ $m(m-m) = •$ ومنها $m = •$ النقاط هي $(•, •)$ و $(*, •)$$

ثانيا / ميل المماس = المشتقة الأولى لمعادلة المنحنى ص $m=m^{7}-m$ m+0 أي أن صm=m-m

$$\frac{1}{m} = \frac{1-}{m}$$
 = عند النقطة (٠٠٥) $\longrightarrow 0$ $\longrightarrow 0$ ، فيكون ميل العمودي = $\frac{1}{m}$ الحالة الأولى : عند النقطة (٠٠٠٥)

معادلة العمودي :
$$\omega - o = \frac{1}{m}(m-r)$$
 ، ومنها $\omega = \frac{1}{m}m + o$

$$\frac{1-}{m} = \frac{1-}{m}$$
 = راحالة الثانية : عند النقطة (m , m) $\Rightarrow m = m - 1$ $\Rightarrow m = m - 1$ هيل المماس $\frac{1-}{m} = m + 1$ معادلة العمودي : $m = m - 1 = m + 1$ $\Rightarrow m = m + 1$ ، ومنها $m = \frac{1-}{m} = m + 1$ معادلة العمودي : $m = m - 1 = m + 1$

السؤال الثالث: يتحرك جسم على خط مستقيم وفق العلاقة ف $^7 = 9 \sqrt{3} + 3$ حيث ف المسافة بالأمتار، ن الزمن بالثواني، جد قيمة أ الموجبة علما بأن سرعته بعد ٢ ثانية تساوي ١ م / ث.

ف
$$^{7} = ^{1}$$
 لطرفين) (بأخذ الجذر التربيعي للطرفين)

$$\dot{\omega} = \sqrt{|\psi \rangle^{2} + |\psi \rangle^{2}}$$
 (بالاشتقاق بالنسبة ل ن

$$\dot{\psi} = \frac{Y^{1}V}{Y}$$
 وبمعلومية ان $\frac{3 = \dot{\psi}}{Y}$

$$|Y| = \frac{1}{1}$$
 ومن المعطى $|Y| = 1$ فأن $|Y| = 1$ فأن $|Y| = 1$ فأن $|Y| = 1$ فأن $|Y| = 1$ ومن المعطى $|Y| = 1$

 7 بتربيع الطرفين فأن 1 + 2 + 3

مرفوض لأن
$$1$$
 قيمة موجبة $= (1+1)(1+1) = 1$ ومنها $= (1+1)(1+1) = 1$

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

اعداد

لسؤال الرابع : اذا كانت ف = حا $(7 + ^4)$ ، هي معادلة الحركة لجسيم يتحرك على خط مستقيم ، حيث أ ، م عددان

ثابتان ، أثبت أن ت = كف عدديا

نشتق المعادلة فينتج ع = ف $^-$ اجتا(۲ ω + م) imes ۲ = ۲ اجتا(۲ ω + م) ، بالاشتقاق مرة أخرى ينتج

لسؤال الخامس : اذا كان المستقيم المار بالنقطة (-۲، ۰) يمس منحنى العلاقة : عس + ص = ٤ ، جد نقطة / نقط

الحل المستقيم = ميل المستقة)

(-67-) مع النقطة (-7-) مع النقطة (-7-)

میل المستقیم
$$\frac{\omega_{\gamma}-\omega_{\gamma}}{\omega_{\gamma}-\omega_{\gamma}}=\frac{\omega-\gamma}{\omega+\gamma}$$
میل المستقیم

٢ – لإيجاد ميل المماس (اشتقاق)

نشتق ضمني
$$\boxed{ ig ig = rac{1}{2} + rac{1}{2} + rac{1}{2} }$$

$$\frac{-2}{\omega} = \frac{-2}{\omega} = \frac{-2}{\omega} = \frac{-2}{\omega} = \frac{-2}{\omega} + 2$$

ميل المماس = ميل المستقيم

$$\frac{\omega}{w} = \frac{\xi}{w} \implies \omega^{\gamma} = -\xi^{w}$$
 من معادلة المنحنى $\frac{1}{2}$ ينتج أن

$$\frac{1-}{7} = \omega \iff \omega \wedge - = \xi \iff \omega \wedge - ^{7} \omega \xi - = ^{7} \omega \xi - \xi$$

$$\left(\overline{T} - \frac{1-\gamma}{\gamma}\right)$$
 د $\left(\overline{T} - \frac{1-\gamma}{\gamma}\right)$ د قاط التماس هي $\left(\overline{T} - \frac{1-\gamma}{\gamma}\right)$

(1,1-) عند النقطة (-1,1) عند النقطة (-1,1) عند النقطة (-1,1)

$$a$$
 $^{\circ}$ a $=$ 1 $=$ 1 $=$ 1 $=$ 1 $=$ 1

حل آخر السؤال السادس

$$\omega$$
 \sim α \sim α

$$\omega$$
 ' α " α "

$$\omega \left(\mathbf{a} \stackrel{\circ}{\sim} + \mathbf{a} \stackrel{\circ}{\sim} \right) = -\mathbf{a} \stackrel{\circ}{\sim} - \mathbf{a} \stackrel{\circ}{\sim}$$

$$\boxed{ (-1,1)}$$
 في المشتقة فينتج $\omega = \frac{-a-a}{a+a} \rightarrow \omega = \frac{(-1,1)}{a+a} \rightarrow \omega$

السؤال السابع: اذا كانت س 2 = لـ و $_{a}$ (سص) ، س ، ص > ، ، اوجد $\frac{2 \, \mathrm{o}}{2 \, \mathrm{w}}$ عند النقطة (١ ، هـ)

$$\frac{\sqrt{m}}{m} + \frac{1}{m} = mr$$

بالتعويض عن النقطة (١، هـ) في المشتقة ينتج أن :

$$l = \frac{\omega}{\omega} = 1$$

القسم الثالث: اسئلة اثرائية

الاشتقاق الضمني

الجواب	أجب عن الأسئلة الاتية	#
<u>YA-</u> YY	$(m+\omega)^\circ = \omega^\intercal - \omega^\intercal + \omega^\intercal$ فأوجد عند النقطة (۱،۱)	,
1	$1 + 1$ ابذا کانت ع = ٥ ص _ ص + ۲ می ص + ۲ مینت ع = ٥ ص _ ص _ اب	۲
ص-۳= ٪ (س-٤)	جد معادلة المماس المرسوم لمنحنى العلاقة (س $ -$	٣
	اذا کانت $m^7 = \frac{6}{m^7 + 1}$ ، أثبت أن m	£
<u> 17-</u>	$\Upsilon=$ نت ل $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	٥
$\frac{\frac{0}{m} + \omega \frac{\xi - \omega}{m} = \omega}{\frac{0}{\gamma} - \omega \frac{\pi}{\xi} = \omega}$	أوجد معادلة المماس و العمودي على المماس لمنحنى القطع الذي معادلته $7 - 7 - 7 - 7$ عند النقطة $(7 - 7 - 7)$	*

			_
<u> (ول</u>	نبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفصل الا	ىلة النخ	ىلس
		٧	
	إذا كان $\left(rac{w}{h} ight)^{-1}=\left(rac{w}{h} ight)^{-1}$ ، حيث أ ، ب أعداد حقيقة لا تساوي صفر ، م ، ن أعداد		
	صحيحة موجبة غير متساوية ،		
	$\left(\frac{\omega}{\omega}\right)\frac{\lambda}{\gamma} = \frac{\omega s}{\sigma s}$ أثبت		
	$\frac{P}{P} = P$ افاثبت أن $P = P = \frac{P}{P}$	٨	
<u> </u>	$=rac{arphi}{arphi}$ اذا کان س $^{rac{\gamma}{m}}+\omega$ اذا کان س	٩	
•	$\frac{1-\frac{1}{r}}{r}\left(\frac{\omega}{m}\right)\frac{Y-1}{r}\left(2\right) \qquad \frac{1-\frac{r}{r}}{r}\left(\frac{\omega}{m}\right)\frac{Y}{r}\left(\pi\right) \qquad \frac{1}{r}\left(\frac{\omega}{m}\right)-\left(\frac{1}{r}\left(\frac{\omega}{m}\right)\right)$		
	جد معادلة المماس المرسوم لمنحنى العلاقة (س $ +$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	١.	
$(\xi-\omega)^{\frac{2}{\eta}}=\Psi-\omega$	= ٦ عند نقطة / نقاط تقاطع منحناها مع المستقيم ص ـ س + ١ = صفر		

القسم الرابع:اسئلة تفوق

الملتقى التربوي www.wepal.net

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

اعداد

t	the fitting the state of the st	*1 1
	النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي- الفع	r e
الجواب	أجب عن الأسئلة الاتية	#
	$rac{\omega}{\omega} = rac{\omega}{\omega}$ اذا کان $\omega = \omega$ ، بین ان $\frac{\omega}{\omega} = rac{\gamma - \omega}{1 - \omega}$	١
$(1-\omega)\frac{\pi-1}{7}=\pi-\omega$	جد معادلة المماس المرسوم لمنحنى العلاقة س $m + 1$ π	*
۸۰-،۸۰+	تتحرك نقطة مادية في خط مستقيم بحيث ان العلاقة بين السرعة (ع) والمسافة (ف) في اللحظة (ن) هي $2=7$ في اللحظة (ن) هي $2=7$ ف 7	4
<u>\</u>	اذا کان ق 7 $\Big(ص^{7} \Big) = 0$ س $^{7} + 7$ ، وکانت ص $= 1$ عندما س $= 1$ وایضا \overline{b} \overline{b} \overline{b} ، جد $\frac{2 \overline{O}}{2 \overline{O}} \Big _{(1,1)}$	£
صفر	اذا کان $\frac{w}{w} + \frac{\omega}{w} = \frac{7}{3}$ ، اثبت أن $\frac{2\omega}{w} = \frac{\omega}{w} = \frac{\omega}{w}$ (1) جد $\frac{2\omega}{w} = \frac{\omega}{w}$ (۲)	٥

الوحدة الاولى / حساب التغاضل

تمارين عامـــة

السؤال الأول: ضع دائرة حول رمز الإجابة الصحيحة:

١٤	۱۳	١٢	11	١.	٩	٨	٧	٦	٥	٤	٣	4	الفرع
د	Ţ	Ţ	İ	÷	د	د	÷	1	÷	Í	د	J.	رمز الإجابة

١) اذا كان متوسط تغير الاقتران ق(س) في الفترة [١ > ٣] يساوي ٤ ، وكان متوسط تغير نفس الاقتران في الفترة [٧ > ٧] يساوي ـ٥ ، فما متوسط تغير الاقتران ق(س) في الفترة [١ > ٧] ؟

$$(Y) \cdots \qquad Y \cdot - = (Y) \upsilon - (Y) \upsilon \leftarrow \circ - = \frac{(Y) \upsilon - (Y) \upsilon}{\xi}$$

17 - (1) = -7 کجمع المعادلتین یتتج

$$\Upsilon - = \frac{1}{7} = \frac{(1)\upsilon - (7)\upsilon}{1 - 7} = [7] = \frac{1}{7} = -7$$
. متوسط التغير في

) اذا كان سك (m) = v (m) + 7 ، وكان التغير في ق(m) عندما تتغير س من ١ الى ١+ هـ يعطى بالقاعدة (m) + m ، ق(m) + m ، فما قيمة ك(m) + m ، فما قيمة ك(m) + m

الحل
$$\triangle \omega = (1+a)^{\intercal} - 1$$
 ، $\triangle \omega = a$

$$Y + (w) v = (w)$$
ال د $Y = (1) v \leftarrow (w) v = (w) v + (w) v + (w) v + (w) v = (w) v +

$$\Upsilon = (1)$$
 وضع $\omega = 1$ \rightarrow $\omega = (1)$ $\omega = (1)$ $\omega = 1$

$$Y+(w)v=(w)$$

$$\frac{(\omega) - (\omega)}{\omega} = (\omega) = (\omega) = (\omega) + (\omega) = (\omega)$$
بالاشتقاق : له $\omega = (\omega) = (\omega) = (\omega)$ بالاشتقاق : له $\omega = (\omega)

$$\boxed{1-} = \text{m-1} = \frac{(1) \text{d} - (1)}{1} = (1) \text{d} \leftarrow 1 = 0$$

٣) اذا كان المماس المرسوم لمنحنى ق(س) عند النقطة (٢ ، -١) يصنع زاوية مقدارها ١٣٥ مع الاتجاه الموجب لمحور السينات ، فما قيمة $\frac{\sigma(m) - \sigma(\gamma)}{\gamma}$ السينات ، فما قيمة $\frac{\sigma(m) - \sigma(\gamma)}{\gamma}$

الحل ن (۲) =ظاه ۱۳ = ۱

$$\frac{1-}{7} = (7) \mathcal{V} \times \frac{1}{7} = \frac{(7)\mathcal{V} - (\mathcal{W})\mathcal{V}}{7-\mathcal{W}} \underbrace{\frac{1}{7}}_{7-\mathcal{W}} = \frac{(7)\mathcal{V} - (\mathcal{W})\mathcal{V}}{2-\mathcal{W}} \underbrace{\frac{1}{7}}_{7-\mathcal{W}} \underbrace{\frac{1}{7}}_{7-\mathcal{W}} = \frac{(7)\mathcal{V} - (\mathcal{W})\mathcal{V}}{2-\mathcal{W}} \underbrace{\frac{1}{7}}_{7-\mathcal{W}} = \frac{(7)\mathcal{W}}{2-\mathcal{W}} = \frac{(7)\mathcal{W}}{2-\mathcal{W}} \underbrace{\frac{1}{7}}_{7-\mathcal{W}} = \frac{(7)\mathcal{W}}{2-\mathcal{W}} = \frac$$

٤) ما معدل تغير مساحة المربع بالنسبة الى محيطه عندما يكون طول ضلعه ٦ سم؟

الحل طول الضلع س=٦

محیط المربع ل = ٤ س

نعوض عن س =٦ ∴ ل = ٤×٢ = ٢٤

$$\frac{\mathsf{U}}{\mathsf{U}} = \mathsf{U} \iff \frac{\mathsf{U}}{\mathsf{U}} = \mathsf{U}$$
 المساحة م $\mathsf{U} = \mathsf{U}$ ولكن س

$$J\frac{1}{\Lambda} = \frac{JY}{17} = \frac{rs}{Ns} \Leftarrow$$

بالتعويض بقيمة ل = ٢٤

ن المعدل = = $\frac{1}{\lambda} \times 3$ $\Upsilon = \Upsilon \times \frac{1}{\lambda}$ سم اسم.

ه) اذا کان
$$v(m) = +\pi | \gamma m$$
 فما قیمة $v(m) + \gamma v(m)$

الحل
$$\upsilon$$
 (س) = جتا Υ س \to υ (س) = -4 جتا Υ س \to υ (س) = -4 جتا Υ س

→ ۲ جتا۲ س + ۲ جتا۲ س + ۲ جتا۲ س = ۲ د جتا۲ س

$$(\Upsilon)^{\prime}$$
 اذا کان $(\Upsilon)^{\prime}$ اذا کان از $(\Upsilon)^{\prime}$ اذا کان از

7
 س $^{7} = (\overline{1+\omega + 1})$ 7

 $(\mathfrak{P})'$ نفرض س = ٤ لکي نحصل على \mathfrak{O}

$$1 \xi \xi = 17 \times 9 = (7) \cup (7) = 7 \xi \times 7 = (7) \cup (7) \times \frac{1}{7}$$

 Υ) اذا کان س $^{7}-$ س - 7 = 7 ، فما قیمة م عند النقطة (۱ ، - ۱) 7

$$1 = \frac{7-1-}{1-7-} = \frac{\infty}{8} \leftarrow (1, 1)$$
 بالتعویض عن

$$(0)^{\prime}$$
 اذا کان $\{ (0)^{\prime}, (0)^{\prime}, (0)^{\prime} \}$ اندا کان $(0)^{\prime}, (0)^{\prime}$ کان $(0)^{\prime},$

ق(س) غير متصل عند س=٥ ، وبالتالي ٠٠ (٥) غير موجودة

٩) يتحرك جسيم على خط مستقيم وفق العلاقة : ف (ω) ع (ω) = ω ، ف : المسافة بالأمتار ، ن: الزمن بالثواني : 3(ن) السرعة ، وكانت 3(7) = 7 م/ث ، فما قيمة التسارع عندما 3(7) = 7 ثانية 3(7)

$$\frac{(\nu)^2 (\nu)}{\gamma((\nu))} = (\nu)^2 (\nu) = \frac{\nu}{(\nu)^{\gamma}((\nu))} \xrightarrow{\text{idit}} \frac{\nu}{(\nu)} = (\nu)^2 (\nu) = \frac{(\nu)^2 (\nu)}{(\nu)^{\gamma}((\nu))} = \frac{(\nu)^2 (\nu)}{(\nu)} = \frac{(\nu)^2 (\nu)}{(\nu)^{\gamma}((\nu))} = \frac{(\nu)^2 (\nu)}{(\nu)^{\gamma}$$

 $\Upsilon=(\Upsilon)$ عند ن $\Upsilon=(\Upsilon)$ ن ($\Upsilon=(\Upsilon)$ عند ن $\Upsilon=(\Upsilon)$ عند ن عن

$$17 - \frac{7}{7} - 7 \times 7 = \frac{7}{7} = -7$$

الحل

اذا کان
$$\mathfrak{G}(m) = \frac{1}{1+m}$$
 ، $\mathfrak{a}(m) = \text{ظاس فما قیمة } (\mathfrak{G} \circ \mathfrak{a}) \cdot (m)$ ؛

$$(\upsilon\circ a)(\omega)=[\upsilon(a(\omega))]=\upsilon(a(\omega))$$
ه (ω)

ج

$$\mathbf{1} = \frac{\mathbf{U}^{\mathsf{T}}\mathbf{U}}{\mathbf{U}^{\mathsf{T}}\mathbf{U}} = \mathbf{U}^{\mathsf{T}}\mathbf{U} \times \frac{\mathbf{U}}{\mathbf{U}^{\mathsf{T}}\mathbf{U}} = \mathbf{U}^{\mathsf{T}}\mathbf{U} \times \mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}^{\mathsf{T}}\mathbf{U}$$

 7 (۱) اذا کانت 7 (س 7 + 7) فما قیمة 7 (۱) 7

$${}^{\mathsf{Y}} \mathcal{M} \mathsf{Y} \times \frac{\xi^{-}}{\mathsf{W}} \left(\mathsf{Y} + {}^{\mathsf{Y}} \mathcal{W} \right) \times \frac{\xi}{\mathsf{q}} - \frac{\mathsf{Y}^{-}}{\mathsf{W}} \left(\mathsf{Y} + {}^{\mathsf{Y}} \mathcal{W} \right) \times \mathcal{W} \frac{\xi}{\mathsf{W}} = (\mathcal{W})^{\mathsf{W}} \mathcal{U}$$

$$\frac{11}{1\lambda} = \frac{1}{1\lambda} - \frac{7}{7} = \frac{1}{17} \times 7 \times \frac{\xi}{9} - \frac{1}{7} \times \frac{\xi}{7} = (1)^{7}$$

 $\frac{z^{0}}{z}$ اذا کانت $w=\pi$ تاص ، $\omega\in\left[\frac{\pi}{2}, \left[\frac{\pi}{2}\right]\right]$ ، فما قیمة وسط

الحل

$$\boxed{1\cdots \frac{1-}{s} = \frac{-s}{s}} \Longleftrightarrow -x = 1 \Longleftrightarrow 1 \Longleftrightarrow 1 \Longleftrightarrow 1$$

ومن معلومية أن س =جتاص (بالتربيع)

$$\cdots$$
 جيا 7 ص 7 جيا 7 ص 7 بإضافة 1 إلى الطرفين 7

$$-1 = -1 = -1$$
 ولكن $-1 = -1 = -1$ -1

:. ۱ – س ٔ = جا ٔ ص (بأخذ الجذر التربيعي)

ب

$$\frac{1-}{\sqrt{1-m^2}} = \frac{ms}{ms} \iff 1 \text{ is given in } \sqrt{1-m^2} \iff 1$$

۱۳) اذا کان
$$(v \circ a) / (\pi) = 0$$
 ، وکان $v (w) = w^{\dagger} - \theta$ ، ه $(\pi) = 0$ ، فما قیمة ه (π) ?

أي الاقترانات الاتية يكون قابلا للاشتقاق على مجاله ؟

$$| \circ = [((r))] =$$

$$\Rightarrow \mathcal{O}^{\prime}(a(\Upsilon)) \times a^{\prime}(\Upsilon) = \circ \ell$$

$$\Rightarrow$$
 7a($^{\circ}$ 7)× $^{\circ}$ 9 = $^{\circ}$ 1 \Rightarrow a($^{\circ}$ 7) = $\frac{7}{7}$

ب

۱٤) جد متوسط التغیر للاقتران ص = ق(m)=(m+1) ه $^{m^{1}-m}$ عندما تتغیر س من ۱ الی ۱ .

$$Y = [w] - Y + [w] =$$

د

السؤال الثاني: جد متوسط التغير للاقتران m=0 =0 =0 =0 =0 =0 هم عندما تتغير =0 من =0 الى =0

$$\frac{(\omega_{\gamma}) - (\omega_{\gamma})}{\Delta \omega} = \frac{\omega(\omega_{\gamma}) - \omega(\omega_{\gamma})}{\omega_{\gamma} - \omega_{\gamma}}$$
 الحل

$$1 = \frac{\dot{\sigma}(1+1)\dot{\sigma}$$

$$\frac{(\Upsilon)\upsilon-(\Upsilon)\upsilon-(\Upsilon)-\upsilon}{(\Upsilon)}$$
 جد نہا کان $\frac{(\Upsilon)\upsilon-(\Upsilon)}{(\Upsilon)}$ بنانت: اذا کان $\frac{(\Upsilon)\upsilon-(\Upsilon)\upsilon}{(\Upsilon)}$ بنانت: اذا کان $\frac{(\Upsilon)\upsilon-(\Upsilon)\upsilon-(\Upsilon)\upsilon}{(\Upsilon)\upsilon}$ بنانت بنان

الحل بفرض ل
$$(m)=\mathcal{U}\left(m^{7}+7m-1
ight)$$
 یکون ل $(1)=\mathcal{U}\left(m^{7}+7m-1
ight)$

$$\left[\frac{1}{1+w}\times\frac{(1)\upsilon-(w)\upsilon}{1-w}\right]_{1-w} = \frac{(7)\upsilon-(1-w7+7w)\upsilon}{1-7w} = \frac{(7)\upsilon-(1-w7+7w)\upsilon}{1-7w} = \frac{(7)\upsilon-(1-w7+7w)\upsilon}{1-7w} = \frac{(7)\upsilon-(1-w7+7w)\upsilon}{1-(1-w7+7w)\upsilon} = \frac{(7)\upsilon-(1-w7+1w)\upsilon}{1-(1-w7+1w)\upsilon} $

$$(1)^{\prime} \cup \frac{1}{7} = \frac{1}{7} \vee (1)^{\prime} \cup =$$

$$(1-\omega Y + {}^{Y}\omega) = (\omega) U ::$$

$$(1-\omega T + (\omega)) \times (T+\omega T) = (\omega) \times (\omega)$$

$$(1-7+1)^{2}\upsilon\times(7+7)=(1)^{2}\omega$$

$$\xi-=1-\times\xi=(7)^{2}\upsilon\xi=$$

$$Y - = \xi - \times \frac{1}{Y} = (1)^{2} \underbrace{\frac{1}{Y}}_{Y} = \frac{(Y) \underbrace{v - (1 - wY + v)}_{Y - 1 - v} \underbrace{v}_{W}}_{Y - 1 - v} \underbrace{\leftarrow}_{Y - v}$$

السؤال الرابع: جد قيمة كل من النهايات التالية باستخدام قاعدة لوبيتال:

" التعويض المباشر =
$$\frac{a \cdot - 1}{dl}$$
 = $\frac{1}{\cdot}$ " صورة غير معينة وباستخدام لوبيتال

$$=$$
 $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ " $\frac{3a}{100}$ "

$$\xi = \frac{\xi}{1} = \frac{\lambda}{1} = \frac{1}{2}$$

الحل

" بالتعويض المباشر
$$=$$
 $=$ $\frac{\cdot}{\mathsf{v}}$ $=$ $\frac{\cdot}{\mathsf{v}}$ $=$ $\frac{\cdot}{\mathsf{v}}$ $=$ $\frac{\mathsf{v}}{\mathsf{v}}$ بالتعويض المباشر $=$ $\frac{\mathsf{v}}{\mathsf{v}}$ $=$ $\frac{\mathsf{v}}{$

$$\frac{1-}{7} = \frac{1-}{7} = \frac{\sqrt{7}}{7} = \frac{\sqrt{7}}{7} = \frac{1-}{7} = \frac{1-}$$

فرع جه: نها جالاس-جاس

$$\frac{1}{Y} = \frac{1-Y}{Y} = \frac{1-Y}{Y} = \frac{Y+x^{2} \cdot -x^{2}}{Y} = \frac{Y+x^{2}$$

فرع د: نهدا سجاس

الحل المعويض المباشر
$$\frac{1-4 - 1}{4 + 4} = \frac{1-4 - 1}{4 + 4}$$
 " صورة غير معينة باستخدام لوبيتال "

$$\frac{+ \sqrt{-1}}{\sqrt{-1}} = \frac{-1}{\sqrt{-1}} = \frac{-1}{\sqrt{-1}} = \frac{-1}{\sqrt{-1}}$$
" صورة غير معينة وباستخدام لوبيتال " $= \frac{-1}{\sqrt{-1}} = \frac{-1}{\sqrt{-1}}$

$$\frac{1}{Y} = \frac{\pi i \pi}{-\pi \pi i \omega + \pi i \omega + \pi \pi i \omega} = \frac{\pi \pi i \omega}{-\pi \pi i \omega + \pi \pi i \omega + \pi \pi i \omega}$$

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي – الفصل الاول السؤال الخامس : جد σ (١) في الحالتين الاتبتين باستخدام تعريف المشتقة :

$$\frac{1}{Y}$$
 الحل $\sigma(m) = \sqrt{(m+1)}$ الحل $\sigma(m) = \sqrt{(m+1)}$

$$\frac{\Upsilon - \frac{1}{\Upsilon} \omega + \frac{\Psi}{\Upsilon} \omega}{1 - \omega} = \frac{(1) \upsilon - (\omega) \upsilon}{1 - \omega} = (1) \upsilon$$

" صورة غير معينة باستخدام لوبيتال
$$\frac{1}{\gamma} = \frac{1-\frac{1}{\gamma}(1)+\frac{\frac{\gamma}{\gamma}(1)}{1-1}}{1-1}$$
 " صورة غير معينة باستخدام لوبيتال

$$=\frac{\frac{1-\sqrt{\sqrt{\sqrt{\gamma}}}}{\sqrt{\gamma}}}{\sqrt{\gamma}} + \frac{1+\sqrt{\gamma}}{\sqrt{\gamma}} \frac{\sqrt{\gamma}}{\gamma} = \frac{1+\sqrt{\gamma}}{\sqrt{\gamma}}$$

$$\boxed{\Upsilon} = \frac{\xi}{\Upsilon} = \frac{1}{\Upsilon} + \frac{\Upsilon}{\Upsilon} =$$

$$\frac{1 - \sqrt{|\nabla w|}}{|\nabla w|} = \sqrt{|\nabla w|}$$
فرع ب:

$$\frac{(1)\upsilon - (\upsilon)\upsilon}{1-\upsilon} = \frac{\upsilon(\upsilon) - \upsilon(1)}{\upsilon - (1)}$$

$$= \frac{1 - \overline{1 - w + 1}}{w - 1} = \frac{1 - \overline{1 - w}}{w - 1}$$

$$= \frac{1 - \frac{1}{m}(1 - m\gamma)}{m - 1} =$$

" صورة غير معينة باستخدام لوبيتال
$$\frac{1-\frac{1}{m}(1-1)}{1-1}=\frac{1}{m}$$
 بالتعويض المباشر

$$\boxed{\frac{\gamma}{m}} = \gamma \times \frac{\gamma^{-}}{m} (1 - 1 \times \gamma) \frac{1}{m} = \frac{\gamma \times \frac{\gamma^{-}}{m} (1 - \omega \gamma) \frac{1}{m}}{1 + \omega} = \frac{\gamma}{m} (1 - \omega \gamma) \frac{1}{m} = \frac{\gamma}{m} (1 - \omega$$

سلسله النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي – الفصل الاول حل آخر: $v(m) = \sqrt[3]{7m-1}$

$$\overline{1-mY} = \sqrt{17m-1}$$

$$\frac{1-\overline{1-\omega}}{1-\omega} = \frac{(1)\upsilon - (\omega)\upsilon}{1-\omega} = (1)\upsilon = ($$

$$\frac{1-\frac{1}{r}(1-\omega T)}{1-(1-\omega T)} \underbrace{-\frac{1}{r}(1-\omega T)}_{1-\omega T} = \underbrace{\frac{\left(1-\overline{1-\omega T}\right)^{r}}{T-\omega T}}_{1-\omega T} \underbrace{-\frac{1}{r}(1-\omega T)^{r}}_{1-\omega T} \underbrace{-\frac{1}{r}(1-\omega T)^{r}}$$

$$\frac{1+\omega}{7}=\omega\leftarrow 1$$
 فإن $\omega\to 1$ فإن $\omega\to 1$ بفرض $\omega=1$

$$\frac{1-\frac{1}{r}\omega}{r-1+\omega} = \frac{1-\frac{1}{r}\omega}{1-\frac{1+\omega}{r}} = \frac{1-\frac{1}{r}\omega}{1-\frac{1+\omega}{r}} = \frac{1-\frac{1}{r}\omega}{1-\frac{1+\omega}{r}} = \frac{1-\frac{1}{r}\omega}{1-\frac{1+\omega}{r}\omega} = \frac{1-\frac{1}{r}\omega}{1-\frac{1+\omega}{r}\omega} = \frac{1-\frac{1}{r}\omega}{1-\frac{1}{r}\omega} $

$$\sqrt{\frac{1-\sqrt{(l)}}{l-\omega}}$$
 ، وباستخدام التعميم: $\sqrt{\frac{l-\sqrt{l}}{l-\omega}}$ ، وباستخدام التعميم:

فى الفترة [٢٥٠] يساوي ٣ ، جد متوسط تغير الاقتران هـ (س) في الفترة [٣٥٠].

الحل متوسط التغير في الفترة
$$[7:7]$$
 يساوي $7 o rac{\mathcal{U}(7) - \mathcal{U}(0)}{7 - 0} = \mathbb{T} o \mathcal{U}(7) - \mathcal{U}(0) = \mathbb{T}$

متوسط التغير في الفترة [۲۰۰]
$$=\frac{\kappa(\gamma)-\kappa(\gamma)}{\gamma}=\frac{(\gamma)-\kappa(\gamma)}{\gamma}=\frac{\gamma+\gamma}{\gamma}=0$$
 متوسط التغير في الفترة

بر اذا کانت نم
$$\frac{U(m) - V}{m - V} = \gamma$$
 ، ق متصلا علی مجاله ، جد نم $\frac{W^{7} U(m) - U(m)}{m - V}$?

$$T = \frac{T - (m)}{1 - m}$$
 الاقتران ق (س) متصل $T = \frac{T - (m)}{m - m}$ الحل الاقتران ق (س) متصل

(معطی)
$$\Upsilon = (1) \mathcal{V}$$
 د $\Upsilon = (1) \mathcal{V} \leftarrow$

" שפנה או יושיבעות או "
$$\frac{\dot{}}{1-1} = \frac{(1) \upsilon - (1) \upsilon \times \dot{}^{r}(1)}{1-1} = \dot{}$$
 יושיבענש ולאו יושיבעות או יושיב

$$\frac{m^{7}\sigma^{-}(m)+\sigma(m)\times mm^{7}}{1}$$

$$9 = 7 \times 7 + 7 = 7 \times (1) \upsilon + (1) \upsilon \times 1 =$$

حل آخر : نہا
$$m = (1)^{r}$$
 ، $\tau = (1) = 0$ ، $\tau = (1) = 0$ (۱) $\tau = 0$ (۱) عطی)

/ الى البسط كالتالي الان بإضافة وطرح $^{\circ}$ و

$$\frac{(1)\upsilon - (1)\upsilon^{\mathsf{T}}\upsilon^{\mathsf{T}}\upsilon + (1)\upsilon^{\mathsf{T}}\upsilon^{\mathsf{T}}\upsilon - (1)\upsilon^{\mathsf{T}}\upsilon^{\mathsf{T}}\upsilon}{1-\upsilon}$$

$$=\frac{\left(1-\frac{m}{\omega}\right)\left(1\right)\upsilon}{1-\omega}+\frac{\left(\left(1\right)\upsilon-\left(\omega\right)\upsilon\right)^{m}\omega}{1-\omega}=$$

$$\frac{\left(1+\omega+{}^{\mathsf{T}}\omega\right)\left(1-\omega\right)}{1-\omega} \underbrace{\left(1\right)\omega+\frac{\left(1\right)\upsilon-\left(\omega\right)\upsilon}{1-\omega}}_{\mathsf{T}}\underbrace{\left(1\right)\omega+\frac{\mathsf{T}}{\mathsf{T}}\omega}_{\mathsf{T}}\underbrace{\left(1\right)\omega}_{\mathsf{T}}\underbrace{\left(1$$

$$9 = 7 \times 7 + (1) = 0$$

السؤال الثامن: يقف أحمد ونزار على سطح بناية ، أفلت أحمد كرة من السكون وفق العلاقة ف (0)=0 ، وفي اللحظة نفسها ، رمى نزار كرة أخرى عموديا الى أسفل وفق العلاقة ف (0)=0 (0)=0 (0) ، فاذا ارتطمت كرة أحمد بالأرض بعد ثانية واحدة من ارتطام كرة نزار ، ما سرعة ارتطام كرة نزار بالأرض

الحل

المسافة التي قطعها أحمد = المسافة التي قطعها نزار

$$\cdot = \lambda \iff \cdot = \lambda \setminus 0 \iff \lambda \setminus 0 + \lambda \setminus 0 = \lambda \setminus 0 \iff \lambda \in 0$$

المسافة التي قطعها أحمد بدلالة الزمن = $0(0+1)^{2}$ = $0(0^{2}+1)+1$ = $0(0^{2}+1)+1$

المسافة التي قطعها نزار بدلالة الزمن = ١٥٠٠خ٠١

هن ۲ + ۱ دن+ه=ه ۱ دن+هن ۲ ضا=ه بن ۱ = ن دن

سرعة نزار = ف /(۱)= ۱۰+۱۰(۱)=۱۰+۱۰=۲۵ م/ث

$$\bullet \neq \circ$$
 ، $\bullet = \left(\frac{\pi}{7}\right)$ (ه ه \circ نجد قیمة ا بحیث (ه ه \circ نجد قیمة ا بحیث (ه ه \circ نجد قیمة ا بحیث (ه \circ نجد قیمة ا بحیث (ه \circ نجد قیمة ا

الحل

$$(\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge \upsilon \times ((\omega) \upsilon) \wedge \omega = (\omega) \wedge ((\omega) \upsilon) \wedge \omega = (\omega) \wedge ((\omega) \vee \omega) \wedge (($$

$$\left(\frac{\pi}{7}\right) \sim \times \left(\left(\frac{\pi}{7}\right) \cup \times \left(\left(\frac{\pi}{7}\right)\right) \sim \left(\frac{\pi}{7}\right) \sim \left(\frac{$$

$$(w) = 4 \pi i m$$

$$(w) = 4 \pi i m$$

$$(w) = \frac{(w' + 1) \times Y - Y - W - W \times (Y - W)}{(w' + 1)^{3}}$$

$$(w) = \frac{Y + Y - W - W - W - W}{(w' + 1)^{3}}$$

$$\cdot = \left(\frac{\pi}{7}\right) \circ \times \left(\left(\frac{\pi}{7}\right) \circ \right) \circ = \left(\frac{\pi}{7}\right) \circ \left(\circ \circ \bullet\right)$$

ولكن
$$\sigma\left(\frac{\pi}{7}\right) = 1$$
 جا $\left(\frac{\pi}{7}\right)$ ولكن ع

$$\mathbf{i}$$
ن ه $\sqrt{\frac{1}{7}} = \frac{-7\left(\frac{1}{7}\right)^7 + 7}{\left(\left(\frac{1}{7}\right)^7\right)^7 + 1} = \mathbf{i}$

الحل

أولا/ نقوم بإعادة تعريف [٢ – س] كالتالى:

السؤال الحادي عشر: يتحرك جسم على خط مستقيم وفق العلاقة ف $\gamma=\gamma$ (ه $\gamma^{\gamma}-\alpha^{-\gamma\gamma}$) ، بين أن تسارع الجسم في أي لحظة يساوي ٤ف (ف الإزاحة بالأمتار ، ن الزمن بالثواني)

الحل
$$\omega = Y \left(a^{\gamma_{\nu}} - a^{-\gamma_{\nu}} \right) \Rightarrow \beta = \omega = Y \left(Y a^{\gamma_{\nu}} + Y a^{-\gamma_{\nu}} \right)$$

$$\Rightarrow 3 = 3 \left(a^{r_{\nu}} + a^{-r_{\nu}} \right)$$

$$c=3=3$$
ک کے اور کھ -7 ہ کے کا کہ کہ کا
$$\mathbf{v} = \mathbf{v} = \mathbf{v} \times \mathbf{v} - \mathbf{v} - \mathbf{v}$$
 کن $\mathbf{v} = \mathbf{v} \times \mathbf{v} + \mathbf{v} \times \mathbf{v}$

 $(\frac{\pi}{2})^{2}$ و با تثانی عشر : اذا کان (w)=+1 سرجتا w ، جد (w)=+1

 $(w) = \Upsilon$ جا 7 سجتا 9 جتا 7 سجتا 1 سجتا 1 جتا 1 جتا 1 جتا 1

$$(m^{\gamma} - m^{\gamma}) = \gamma$$
جتاس جاس (جتاس – جاس) $+ \gamma (m + m^{\gamma}) + \gamma (m + m^{\gamma})$

$$(\omega - \omega)^{\dagger}(\omega + \omega)^{\dagger}(\omega + \omega) + (\omega - \omega)^{\dagger}(\omega - \omega)^{\dagger}(\omega + \omega)^{\dagger}(\omega - \omega)^{\dagger$$

$$\left[\left. \left(\left. \left(- \right) \right) \right) \right. + \left. \left(\left. \left. \left(\left. \left. \left(\left. \left(\left. \left. \left(\left. \left. \left(\left. \left. \left(\left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left. \left(\left. \left(\left. \left. \left(\left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left(\left. \left. \left(\left. \left(\left. \left(\left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left. \left(\left. \left. \left(\left. \left. \left. \left(\left. \left(\left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left(\left. \left. \left(\left. \left(\left. \left. \left(\left. \left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left. \left. \left. \left(\left. \left. \left. \left(\left. \left. \left(\right) \right) \right) \right) \right) \right) \right) \right. \left(\left. \left. \left. \left(\left. \left. \left. \left(\right) \right) \right) \right) \right) \right. \right. \right. \right) \right. \right. \right. \right. \right. \right. \right. \right) \right. \right. \right. \right. \right) \right. \right. \right. \right. \right. \right. \right. \right. \right. \right] \right. \right. \right] \right. \right] \right] \right] \right] \right] \right. \right] \right. \right] \right. \right. \right. \right. \right. \right. \right. \left. \left. \left. \left(\left. \left. \left(\left. \left(\left. \left(\left. \left(\left. \left(\left. \left. \left(\left. \left. \left(\right) \right) \right) \right) \right) \right. \left(\left. \left(\right) \right) \right) \right) \right) \right) \right. \left(\left. \left(\right) \right) \right) \right) \right) \right) \right. \left. \left(\right) \right) \right) \right) \right) \right) \right) \right. \left(\left. \left(\left(\left. \left(\left(\left. \left(\left($$

$$\left[\left(\frac{\pi}{\xi} + \frac{\pi}{\xi} \right) + \frac{\pi}{\xi} + \frac{\pi}{\xi} \right] \left(\frac{\pi}{\xi} - \frac{\pi}{\xi} \right) = \left(\frac{\pi}{\xi} \right) =$$

$$\bullet = \left(\sqrt[r]{\left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}}\right)} + \frac{1}{\sqrt{1}} \times \frac{1}{\sqrt{1}} \right) \left(\underbrace{\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{1}}}_{:=} \right) \sqrt{\frac{1}{\sqrt{1}}} = \frac{1}{\sqrt{1}} \left(\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}} \right) \left(\frac{1}{\sqrt{1}} + \frac{1$$

السؤال الثالث عشر: جد مجموعة قيم س التي يكون عندها $\sigma'(m) = 0$ في كل مما يأتي:

فرع \underline{i} : $\upsilon(w) = (w - Y)^{*} \times (Y + Yw)^{*}$

$$^{\mathsf{Y}}(\mathsf{Y}-\mathsf{W})$$
 ه $^{\mathsf{Y}}(\mathsf{W})=(\mathsf{W}-\mathsf{Y})^{\mathsf{Y}}\times \mathsf{Y}+(\mathsf{W}+\mathsf{Y})^{\mathsf{Y}}\times \mathsf{Y}+(\mathsf{W}+\mathsf{Y})^{\mathsf{Y}}\times \mathsf{Y}$

$$(V - W)^{\dagger} (W + W)^{\dagger} + W(W + W)^{\dagger} (W - W)^{\dagger} = \lambda (W - W)^{\dagger} = \lambda (W - W)^{\dagger} (W -$$

أسليم السيقلى أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعى

$$\bullet = [\omega + 9 + 1 + 1 - \omega \Lambda]^{\mathsf{T}} (\omega + \mathsf{T})^{\mathsf{T}} (\mathsf{T} - \omega)$$

$$\cdot = (V - \omega Y)^{\dagger} (\omega Y + \omega)^{\dagger} (Y - \omega)$$

$$Y = \omega \leftarrow \cdot = (Y - \omega)$$

أو ٤ اس
$$\sim \lor = \lor \sim$$
 أو ٤ اس الح

$$\left[\frac{\pi}{\mathsf{Y}}, \right] \Rightarrow \mathcal{W} \left(\mathcal{W} = +1 \right) \mathcal{W} = (\mathcal{W}) \mathcal{U} : \underline{\psi}$$
فرع ب

$$\frac{\pi}{7}=\omega\leftarrow\frac{1}{7}=\omega$$
جتا $\pi=1-\omega$ جتا $\pi=1$ ومنها : ۲ جتا $\pi=1-\omega$ جتا $\pi=1$

$$\left[\frac{\pi}{7},\cdot\right]$$
 و جتا $m+1=-$ جتا $m=-1$

السؤال الرابع عشر: جد $\frac{z^{0}}{z}$ لكل من الاقترانات الاتية :

$$\frac{\omega_{\alpha}}{\omega_{\alpha}} = 0$$
 فرع أ: $\omega = 0$

العل
$$\sigma'(m) = \frac{ + J^{m}(a^{rm} + J^{m}a^{rm}) - m a^{rm} + r J^{m}}{ + J^{m}m}$$

حل آخر: ممكن حل السؤال بأخذ لوغاريتم للطرفين.

$$\frac{\omega_{\underline{\sigma}}}{\underline{\sigma}} = \sigma(\omega) = \frac{\omega_{\underline{\sigma}}}{\omega_{\underline{\sigma}}}$$

$$\frac{1}{\sqrt{(w)}} = \frac{\sqrt{(w) - w \cdot e^{w}} - \sqrt{(w) - w \cdot e^{w}}}{\sqrt{(w)}} = \frac{\sqrt{(w) - w \cdot e^{w}}}{\sqrt{$$

الحل
$$\omega = 1(\pi r) + \pi r + \pi r \omega$$

$$\Rightarrow 3 = 1(-7 + \pi r) + \pi r r \omega$$

$$\Rightarrow 3 = 71(-\pi r) + \pi r r \omega$$

السؤال السادس عشر: جد النقطة / النقاط التي يكون عندها المماس لمنحنى w=w+w=1 ، $w\neq w$

موازیا للقاطع الواصل بین النقطتین (۲،۱)، (۲، $\frac{6}{7}$).

$$\frac{1}{\sqrt{m}} - 1 = (m)$$
 $\upsilon \leftarrow \frac{1}{m} + m = (m)$ $\upsilon \leftarrow \frac{1}{m} + m = (m)$

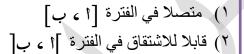
$$\frac{1}{1-1} = \frac{7-\frac{0}{7}}{1-7} =$$
ميل المماس = ميل القاطع $\frac{0}{1-7} = \frac{1}{1-7}$ المماس يوازي القاطع

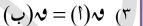
$$\overline{Y}$$
 $V \pm V \pm V = V$ easy $\overline{Y} = \frac{1}{V} + V = \frac{1}{V} = \frac{1}{V} + V = \frac{1}{V} = V = V$ easy $\overline{Y} = \frac{1}{V} + V = \frac{1}{V$

$$\left(\left(\overrightarrow{\mathsf{TV}} - \right)$$
 ، $\left(\left(\overrightarrow{\mathsf{TV}} \right) \right)$ ، $\left(\left(\overrightarrow{\mathsf{TV}} \right) \right)$ ، النقط هي $\left(\overrightarrow{\mathsf{TV}} - \overrightarrow{\mathsf{TV}} \right)$

······································

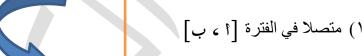
TINON OF ZTON TILLING TO TO TO THE TILLING THE TILLING TO THE TILLING THE TILLING TO THE TILLING
とうないとうというないがに




المحدة الثانية / تطبيقات التخاضل

الدرس الأول نظريتا رول و القيمة المتوسطة

القسم الأول: الملخص


نظرية رول: إذا كان ق (س) يحقق الشروط الآتية:

فإنه يوجد عدد حقيقي واحد على الأقل ج \in ١٦ ، ب[بحيث أن 🍪 (ج) = •تتعلق نظرية رول بايجاد المماسات الافقية او اصفار (جذور) المشتقة الاولى

نظرية القيمة المتوسطة: إذا كان ق(س) يحقق الشروط الآتية:

٢) قابلا للاشتقاق في الفترة ٢ ، ب[

فإنه يوجد عدد حقيقي واحد على الأقل ج= | ، ب= بحيث أن مررج = ومرب = مرا= فإنه يوجد عدد حقيقي واحد على الأقل ج

تتعلق نظرية القيمة المتوسطة بايجاد المماسات العادية

ليس الجمال بأثواب تزيننا ،،، إن الجمال جمال العلم والأدب

القسم الثاني: حلول تمارين الكتاب

السؤال الأول: بين أياً من الاقترانات الآتية يحقق شروط نظرية رول في الفترة المعطاة ، ثم جد قيمة أو قيم ج التي تحددها النظرية في كل حالة (ان وجدت):-

فرع أ: و
$$\wedge$$
 (س) = $\sqrt{3}$ ، س \in [٠٠٤]

الحل

جال
$$(w)$$
 متصل في الفترة $(*)$ عجال $(*)$ متصل في الفترة $(*)$

$$4 > m > 1$$
 مجاله $4 < m < 3$

$$\cdot = \overline{\cdot - \cdot \times \xi} / = (\cdot) \sqrt{2}$$

$$\cdot = \overline{{}^{\forall} \xi - \xi \times \xi} / = (\xi) \wedge$$

$$\boxed{(\xi) \mathcal{N} = (\cdot) \mathcal{N}} \Leftarrow$$

عداد

$$\cdot = ()$$
 جيث أن م $()$ $= ()$ جيث أن م

٢)نجد قيم /قيمة جالتي تعينها النظرية:

$$\sqrt{3} = \frac{1 - \frac{1}{2}}{7}$$
 بالضرب التبادلي $\sqrt{3} = \frac{1}{7}$

$$[\xi, \cdot] = Y + \xi = -\xi - \xi = -\xi$$

$[\Upsilon \circ 1 -] = \omega$ ، $\Psi - \Psi - \Upsilon - \Psi = (-1)^{3}$ فرع ب: Φ

$$\mathfrak{G}(m)$$
 متصل على $[-173]$ (لأنه كثير حدود)

$$\mathfrak{v}(-1) = \mathfrak{v} - \mathfrak{v} + \mathfrak{v} = \mathfrak{v}(-1) = \mathfrak{v}(-1)$$
 عقق شروط نظرية رول $\mathfrak{v}(-1) = \mathfrak{v}(-1) = \mathfrak{v}(-1) = \mathfrak{v}(-1)$ عقق شروط نظرية رول $\mathfrak{v}(-1) = \mathfrak{v}(-1) = \mathfrak{v}(-1)$

۱. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعى

٢) نجد قيمة / قيم ج التي تعينها النظرية:

 $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$ ، $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$ ، $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$ ، $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$ ، $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$ ، $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$ ، $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}(3 + \dots + \frac{1}{V})}_{\dot{o}(3 + \dots + \frac{1}{V})}$. $\underbrace{\dot{o}($

 $\left[\Upsilon \circ \frac{1}{\Upsilon} \right]$ متصل \forall س جہ ، $\left[\Upsilon \circ \frac{1}{\Upsilon} \right]$ یہ متصل فی الفترہ $\left[\Upsilon \circ \frac{1}{\Upsilon} \right]$ متصل فی الفترہ $\left[\Upsilon \circ \frac{1}{\Upsilon} \right]$

 $e_{N}(w) = \underbrace{\downarrow_{k}}_{k}(w + \frac{1}{w}) = \underbrace{\downarrow_{k}}_{k}(w + \frac{1}{w}) = \underbrace{\downarrow_{k}}_{k}(w)

 $\frac{1}{\sqrt{1}}$ قابل للاشتقاق في الفترة $\frac{1}{\sqrt{1}}$ ، $\sqrt{1}$

 $\wp(\frac{1}{7}) = \stackrel{\downarrow}{}_{\sim}(\frac{1}{7} + 7) = \stackrel{\downarrow}{}_{\sim}(\frac{1}{7})$ $\Leftrightarrow (\frac{1}{7}) = \wp(m) \text{ يحقق شروط نظرية رول}$ $\wp(7) = \stackrel{\downarrow}{}_{\sim}(7 + \frac{1}{7}) = \stackrel{\downarrow}{}_{\sim}(\frac{1}{7} + 7)$ $\wp(7) = \stackrel{\downarrow}{}_{\sim}(7 + \frac{1}{7}) = \stackrel{\downarrow}{}_{\sim}(\frac{1}{7} + 7)$

 $\cdot = ()$ بحیث أن قم () = = E

٢)نبحث عن قيمة /قيم جالتي تعينها النظرية:

 $\sqrt[4]{(\kappa)} = \cdot \Rightarrow \frac{7\kappa}{\kappa^7 + l} - \frac{l}{\kappa} = \cdot \Rightarrow \frac{7\kappa^7 - (\kappa^7 + l)}{\kappa(\kappa^7 + l)} = \cdot \Rightarrow 7\kappa^7 - \kappa^7 - l = \cdot$ $\sqrt[4]{(\kappa)} = \cdot \Rightarrow \frac{7\kappa}{\kappa^7 + l} - \frac{l}{\kappa} \Rightarrow \frac{7\kappa^7 - l}{\kappa(\kappa^7 + l)} = \cdot \Rightarrow 7\kappa^7 - l = \cdot$ $\sqrt[4]{(\kappa)} = \cdot \Rightarrow \frac{7\kappa}{\kappa^7 + l} - \frac{l}{\kappa} \Rightarrow \frac{1}{\kappa(\kappa^7 + l)} \Rightarrow \kappa = -l$ $\sqrt[4]{(\kappa)} = \cdot \Rightarrow \kappa^7 = l$ $\sqrt[4]{(\kappa)}

فرع د: قه(س) =جا۲س+۲جاس ، س = [π٠٠]

الحل

(حاصل جمع اقترانین متصلین) متصل علی
$$[\pi \epsilon \cdot]$$
 (حاصل جمع اقترانین متصلین)

$$\cdot = ($$
ج $)$ کو ان مہ π ان ہے Ξ

٢)نبحث عن قيم /قيمة س التي عينها النظرية:

$$\pi$$
د، $= \pi$ سال π + π المتا π π π π π π π π

کجتا
$$^{\prime}$$
 $= ^{\prime}$ کجتا $^{\prime}$ $= ^{\prime}$ کجتا $^{\prime}$ $= ^{\prime}$ کجتا $= ^{\prime}$ (بالقسمة علی ۲)

$$\left]\pi \cdot \left[\ni \frac{\pi}{\gamma} \cdot \frac{\pi}{\gamma} = \Rightarrow \leftarrow \frac{1}{\gamma} = \Rightarrow \Rightarrow \leftarrow 1 = \Rightarrow \Rightarrow \leftarrow 1 = \uparrow$$

السؤال الثاني: بين أيا من الاقترانات الآتية يحقق شروط نظرية القيمة المتوسطة في الفترة المعطاة ، ثم جد قيمة أو قيم جد التي تحددها النظرية في كل حالة (ان وجدت):-

$$\bullet$$
فرع أ: \bullet د $(\omega) = \omega$ " $-\omega$ ، $\omega \in [-77]$

ن
$$\mathfrak{h}(m)$$
 متصل على $[-161]$ (لأنه كثير حدود)

دود) قابل للاشتقاق على
$$-1$$
۱۲ (لأنه كثير حدود)

$$\Longrightarrow 0 \wedge (m)$$
 يحقق شروط نظرية القيمة المتوسطة

$$\frac{(1-) \cdot (7) \cdot (7)}{(1-) \cdot (7)} = \frac{(7) \cdot (7)}{(7) =$$

لإيجاد قيم/ قيمة ج:

$$\frac{\left(1-\left(1-\right)-{}^{\mathsf{r}}\left(1-\right)\right)-\left(1-\mathsf{r}-{}^{\mathsf{r}}\mathsf{r}\right)}{\left(1-\right)-\mathsf{r}}=\left(\mathbf{z}\right)^{\mathsf{r}}\mathsf{v}\boldsymbol{\xi}$$

$$Y = \frac{7}{7} = \frac{(1-)-6}{1+7} = 1-\frac{7}{7} = Y \Leftarrow$$

فرع ب س (س) = لا عن ج[-۲۵۱]

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

اعداد

$$\{Y-\}-\zeta\supseteq [Y\circ Y-]=\gamma$$
ولأن $\{Y-\}-\zeta=\gamma$

$$\longrightarrow \mathcal{O}(m)$$
متصل في الفترة $[-76]$

$$\frac{\xi - \frac{1}{\Upsilon(\Upsilon + \omega)} = \frac{1 \times \xi - 1 \times (\Upsilon + \omega)}{\Upsilon(\Upsilon + \omega)} = (\omega)^{2} \otimes \Leftarrow$$

$$\mathbf{E}$$
 المتوسطة عقق نظرية القيمة المتوسطة \mathbf{E}

$$\frac{(1-) \cdot (-) \cdot (-) \cdot (-)}{(1-) - 1} = (\Rightarrow)$$
 کیث أن م (\Rightarrow)

نبحث عن قيم / قيمة ج:

$$\frac{\left(\frac{\xi}{\gamma+1-}\right)-\left(\frac{\xi}{\gamma+\gamma}\right)}{(1-)-\gamma}=(\varkappa)^{2} \vartheta$$

$$1-\frac{\xi-1}{\gamma}=\frac{\xi-1}{\gamma(\gamma+\varkappa)} \Leftarrow$$

ربأخذ الجذر التربيعي للطرفين)
$$\xi = {}^{1}(\Upsilon + \varphi) \Leftarrow$$

$[9(\xi)] = \sqrt{m} + \gamma m$ فرع جن فرس = (3)

أ سليم السيقلي

$$\bullet \leq m \forall$$
 متصل متصل

$$]\infty$$
رس) متصل في الفترة $]\infty$ ، ولأن $[3.8]$

$$= \mathfrak{b}(m)$$
متصل في الفترة \mathfrak{b}

$$Y + \frac{1}{\sqrt{m}} = (\omega)^{2}$$

$$-\infty$$
 قابل للاشتقاق في الفترة $-\infty$ ، ولأن $-\infty$ والمنتقاق في الفترة $-\infty$ الفترة $-\infty$

$$\Rightarrow 0$$
 الفترة] $\Rightarrow 0$ الفترة] $\Rightarrow 0$

$$\Longrightarrow \mathcal{N}(m)$$
 تحقق نظرية القيمة المتوسطة

$$(\xi)$$
 عیث أن (ξ) انجیث أن (ξ) عیث (ξ) عیث أن (ξ)

$$\frac{(\xi \times \Upsilon + \overline{\xi} /) - (\mathfrak{q} \times \Upsilon + \overline{\mathfrak{q}} /)}{\xi - \mathfrak{q}} = (\thickapprox) \checkmark \diamond$$

$$\frac{11}{6} = \frac{(\lambda + 1) - (1\lambda + 1)}{6} = 1 + \frac{1}{5\sqrt{15}} \Leftarrow$$

ابتربيع الطوفين)
$$\frac{0}{7} = \overline{\frac{1}{7}} \iff \sqrt{\frac{1}{7}} = \frac{0}{7}$$
 (بتربيع الطوفين)

$$]96 \ \xi = \frac{70}{\xi} = \cancel{>} \leftarrow$$

٣٥٠] ، جد قيم الثابتين أ ، ب ، ثم جد قيمة / قيم ج التي تحددها النظرية .

أ. آلاء البرعي

أ. آلاء الجزار

أ. سليم السيقلي أ. بلال أبو غلوة

$$\phi(m)$$
 يحقق شروط نظرية القيمة المتوسطة

$$\star$$
 هتصل عند س=۲ نامتصل عند س=۲

$$= \underbrace{\mathsf{i}}_{\mathsf{w}\to\mathsf{r}_{-}} \mathsf{e}_{\mathsf{w}}(\mathsf{w}) = \underbrace{\mathsf{i}}_{\mathsf{w}\to\mathsf{r}_{-}} \mathsf{e}_{\mathsf{w}}(\mathsf{w})$$

$$1 \leftarrow \lambda = \downarrow + \uparrow \uparrow \leftarrow$$

$$^{-}(\Upsilon)^{\prime}$$
 \diamond = $^{+}(\Upsilon)^{\prime}$ \diamond

$$\Upsilon + (\Upsilon) \times \Upsilon = - \Upsilon(\Upsilon) + \Upsilon$$

بطرح المعادلة ١ من المعادلة ٢

بالتعويض في المعادلة ١
$$=$$
٢ $=$ ٢ $=$ ٢

لإيجاد قيمة ج:

$$\frac{\circ}{7} = \cancel{\Rightarrow} \leftarrow \circ = \cancel{7} \leftarrow \cancel{7} = \cancel{7} + \cancel{7} = \cancel{7} + \cancel{7} = \cancel{7} + \cancel{7} = \cancel{7} + \cancel{7} = $

أ. بلال أبو غلوة

$$=$$
إما $=$ $-$ مرفوض

$$] \circ = \sqrt{\frac{17}{m}} \in] \cdot \circ \pi [$$

السؤال الرابع: اذا كان $(m) = \frac{1}{m}$ ى $(m) = \frac{1}{m}$ ى $(m) = \frac{1}{m}$ ى $(m) = \frac{1}{m}$ ى المتوسطة وجود عدد

حقيقي واحد على الأقل ج $\in]$ ا، بحيث ج =ا. ا

$$\Longrightarrow \mathcal{N}(m)$$
 يحقق شروط نظرية القيمة المتوسطة

$$\frac{(\mathfrak{k}) \circ -(\mathfrak{p}) \circ \circ}{\mathfrak{k} - (\mathfrak{p})} = \frac{\mathfrak{p}(\mathfrak{p}) \circ \circ \circ \circ}{\mathfrak{p}} = \mathbb{E} \subset \mathbb{E}$$

$$\frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1-\psi}{1-\psi}} = \frac{\frac{1-\psi}{1-\psi}}{\frac{1$$

السؤال الخامس: بين أن لمنحنى الاقتران (m) = 3 جا ٧ س مماسا أفقيا واحدا على الأقل في الفترة

. ش جد نقط التماس $[\pi \cdot \cdot] \ni$

$$[\pi60]$$
 المحل (س) يحقق نظرية رول في الفترة المحل (س) يحقق نظرية رول في الفترة

$$[\pi^{(m)}]$$
 اقتران متصل في الفترة

$$\pi$$
اقتران قابل للاشتقاق في الفترة π ا π

$$(\pi) \mathcal{A} = (\cdot) \mathcal{A} \iff \cdot = \pi \mathsf{Y} \implies \mathsf{E} = (\pi) \mathcal{A} \land \cdot \cdot = \mathsf{I} \implies \mathsf{E} = (\cdot) \mathcal{A}$$

ڪ فہ
$$(^{w})$$
 يحقق شروط نظرية رول \Leftarrow

$$\cdot = (\pi)$$
 جے ان میں اُن میں اُن جا π ن اُن کہ Ξ

يوجد للمنحنى مماساً أفقياً على الأقل في الفترة
$$\pi$$

$$]\pi \cdot \cdot [\ni \frac{\pi \Upsilon}{\xi} = \varkappa \leftarrow \frac{\pi \Upsilon}{\Upsilon} = \varkappa \Upsilon \quad \text{if} \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad \text{if} \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad \text{if} \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad \text{if} \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\Upsilon} = \varkappa \Upsilon \quad]\pi \cdot [\ni \frac{\pi}{\xi} = \varkappa \leftarrow \frac{\pi}{\chi} = \varkappa \Upsilon \quad]\pi \cdot [\lnot \xrightarrow{\pi} = \varkappa \xrightarrow{\pi} = \varkappa \Upsilon \quad]\pi \cdot [\lnot \xrightarrow{\pi} = \varkappa \xrightarrow{$$

$$(\xi - \epsilon \frac{\pi \Upsilon}{\xi})$$
 ، $(\xi \epsilon \frac{\pi}{\xi})$: نقاط التماس هي

قه (س) متصل [۱،ب]

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ عليم السيقلي

اعداد

الحل

رس) يحقق شروط نظرية القيمة المتوسطة حيث يوجد ج
$$\in$$
 المتوسطة عن يوجد

$$\frac{(!) \cdot (-) \cdot (-) \cdot (-)}{(-)} = \frac{(!) \cdot (-) \cdot (-)}{(-) \cdot (-)} = \frac{(!) \cdot (-) \cdot (-)}{(-)} = \frac{(!) \cdot (-)}{(-)} =$$

$$\mathfrak{Z}(\mathfrak{f})=\mathfrak{G}(\mathfrak{a}(\mathfrak{f}))$$
، (ولأن ه $(\mathfrak{f})=\mathfrak{g}(\mathfrak{g})\Longrightarrow\mathfrak{Z}(\mathfrak{f})=\mathfrak{G}(\mathfrak{g})$... $[\mathfrak{f}]$

$$\mathfrak{Z}(\mathbf{p}) = \mathfrak{G}(\mathbf{a}(\mathbf{p}))$$
 ، (ولأن $\mathbf{a}(\mathbf{p}) = \mathbf{b}(\mathbf{p}) \Rightarrow \mathfrak{Z}(\mathbf{p}) = \mathfrak{G}(\mathbf{p})$... \mathfrak{T}

من ۱ ، ۲ ینتج أن:

$$\frac{(1)-3(1)}{3} = \frac{3(1)-3(1)}{3} = \frac{3(1)-3(1)}{3}$$

$$(!-3)(-3)(-3)$$
 (ب $=$ 0) $(+-3)$

النظرية هي عندما س = ظتاس

الحل

به الفترة
$$\left\lceil \frac{\pi}{\gamma} \right
angle$$
، $\left\lceil \frac{\pi}{\gamma} \right
angle$ والفترة $\left\lceil \frac{\pi}{\gamma} \right
angle$ والفترة الفترة $\left\lceil \frac{\pi}{\gamma} \right
angle$

و الله قابل للاشتقاق في الفترة
$$\frac{\pi}{7}$$
 (الأنه حاصل ضرب اقترانين قابلين للاشتقاق)

$$(\frac{\pi}{\mathsf{Y}}) \diamond = (\mathsf{I}) \diamond \Leftarrow \qquad \mathsf{I} = (\mathsf{I}) \diamond \mathsf{I} \Leftrightarrow \mathsf{I} = (\frac{\pi}{\mathsf{Y}}) \diamond \mathsf{I} \Leftrightarrow \mathsf{I} = (\mathsf{I}) \diamond \mathsf{I} \Leftrightarrow $

$$(m)$$
 يحقق شروط نظرية رول ڪاپ

$$\cdot = ()$$
 کیث أن $\mathcal{S} \setminus \{ \}$ جیث أن $\mathcal{S} \in \mathbb{R}$

⇒القيمة التي تعينها النظرية هي عندما س =ظتاس

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي - الفصل الاول القسم الثالث : اسئلة اثرائية

نظريتا رول والقيمة المتوسطة

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
	قيمة جـ التي تحددها نظرية رول على الاقتران ق (س) = جاس + جتاس في الفترة $\begin{bmatrix} & \cdot & \cdot \\ & & \cdot \end{bmatrix}$	•
€	$\frac{\pi}{\gamma}$ (ع $\frac{\pi}{\gamma}$ (ع $\frac{\pi}{\gamma}$ (ع $\frac{\pi}{\gamma}$ (ع $\frac{\pi}{\gamma}$ (ع	
	إذا كان ق (س) = س م - س - أ يحقق شروط نظرية رول على الفترة	۲
د	[- ١ ، أ] فإن قيمة الثابت أتساوي:	
	ر) ۱ (ټ ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک ک	
	إذا كان ق (س) =	٣
E	فإن قيمة جـ التي تحددها النظرية هي :	
	$\frac{7}{4}$ (2) $\frac{5}{4}$ (2) $\frac{5}{4}$ (4)	
ب	: قیمة جـ التی تحدهها نظریة رول علی فہ (w) جتا w +جا w في $\left[rac{\pi}{7}$ هي	ŧ
	ب) $\frac{\pi}{\gamma}$ (ج $\frac{\pi}{\xi}$ (ب $\frac{\pi}{\gamma}$ (أ	

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
۲ = ۱	$(4.5) = {m^7 - 1} س ، صفر \leq m < 1 اذا کان ق (س) = m^7 - 1 س m^7 - 3 س m < 7$	•
ب = ۲		
خ= ۱	يحقق شروط نظرية رول على [، ، ۲] جد قيمتي الثابتين أ ، ب ثم جد قيمة /قيم جـ التي تحددها النظرية .	
۱ =۱	اِذَا كَانَ قَ (س) = اِذَا كَانَ قَ (س) = اِذَا كَانَ قَ (س) = ﴿	۲
ب = ٣		
ج = _ ٩	يحقق شروط نظرية رول ، أوجد الثوابت أ ، ب ، ج	

أ. آلاء البرعي

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

	6 N. 6 . 4 6 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 6	*
	النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي - الفصل الاول بين أن الاقتران ق (س) = س ' + ١ بحقق شروط نظرية رول على	
جـ = ١	بین أن الاقتران ق(س) = $\frac{w' + 1}{w}$ یحقق شروط نظریة رول علی $[Y_2]$	'
	الفترة	
\ _ (Y > >	٤
$\frac{1}{\xi} = 1$	$egin{aligned} egin{aligned} eg$	
ب = -٧		
<u>√~</u> = →	يحقق شروط نظرية القيمة المتوسطة على [، ، ٣] ، فعين قيم الثابتين أ ، ب ثم جد قيمة / قيم جالتي تعينها النظرية	
<u>~</u> - -	التابلين ۱، ب لم جد فيمه ۱ فيم جـ التي تعينها النظرية	
	Y > (m > 1	٥
	$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$	
٩ ٠		
4	فابحث في تحقق شروط نظرية القيمة المتوسطة على ق (س) في الفترة	
	[۱ ، ۳] ثم جد قيمة جالتي تعينها النظرية (إن وجدت)	
	1 > >	٦
۱ = ۱	$1> \omega \geq 0$ $+ \gamma$,
ب = ١		
	يحقق شروط نظرية القيمة المتوسطة على [، ، ٢] فجد قيمتي أ ، ب	
	$egin{aligned} egin{aligned} egin{aligned} -w^4 & + w & + 1 & 0 & 0 \\ egin{aligned} egin{aligned} egin{aligned} -w^4 & + w & - 1 & 0 \\ \end{pmatrix} & & & & & & & & & & & & & & & & & &$	٧
۱ = ۳، ب	اذا كان	
~	المتوسطة على [٢٠٠] جد:	
<u>٣</u> ٤		
	١) قيم الثابتين ٢) قيمة جالتي تعينها النظرية	
\		

أ. آلاء البرعي

أ. آلاء الجزار

أ. سليم السيقلي أ. بلال أبو غلوة

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي - الفصل الاول القسم الرابع : اسئلة تفوق

n.		
الجواب	القسم الأول: اختر الاجابة الصحيحة	#
	اذا کان ق $(m)=m^{*}+$ ب س معرف علی $[76,7]$ حیث $(9)=8$ وکان ق $(9)=8$	1
= $=$ $=$	ق $(Y)=1$ ، ابحث في تحقق شروط نظرية القيمة المتوسطة على الاقتران ق (w) في الفترة	
	[۲۵۰] ثم جد قيمة التي تعينها النظرية .	
	باستخدام نظرية رول بين انه لاي اقتران كثير حدود من الدرجة الثالثة فما فوق اذا قطع منحناه	۲
	ق ﴿ (س) محور السينات في ثلاث نقاط فان منحنى يقطع محور السينات في نقطة واحدة على الاقل	
	اذا کان ق (m) هه (m) اقترانین کثیری حدود موجبتین متقاطعتین عند النقطتین $(m_{3}-m_{1})$	٣
	(m_{γ}) ، اثبت انه یوجد علی الاقل ج $\in [m_{\gamma}]$ س سن ان	
	$\dot{\varepsilon}(\kappa) \neq 0$ هر $\dot{\varepsilon}(\kappa)$ هر $\dot{\varepsilon}(\kappa)$ هر $\dot{\varepsilon}(\kappa)$ هر $\dot{\varepsilon}(\kappa)$	
	اذا كان ق(س) كثير حدود معرف على [٢٥٠] بحيث ق ق(١) $> (١) < ق (٢) اثبت ان$	٤
	يوجد	
	$(w) \times (w) \times (w) \times (w) \times (w) \times (w)$ جر، جہ $(w) \times (w) \times (w) \times (w)$	
	اذا كان ق $(m)=m^{7}+m+1$ الله $\in [0,0]$ وكانت معادلة المماس عند قيمة جـ التي	٥
7616	تعينها نظرية القيمة المتوسطة هي $\omega= 7$ س جد قيمة 1 ب 3 ب 3	<i>J</i>

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

الوحدة الثانية / تطبيقات التفاضل

الدرس الثاني الاقترانات المتزايدة و المتناقصة

القسم الأول: الملخص

يكون منحنى الاقتران ق(س) المعرف في [أ، ب] ، س، س، ∈ [أ، ب]

- $(m_{\gamma}) = (m_{\gamma}) = (m_{\gamma}) = (m_{\gamma}) = (m_{\gamma}) = (m_{\gamma}) = (m_{\gamma}) = (m_{\gamma})$
- (س₁) حتناقصاً في [أ، ب] إذا تحقق الشرط: عندما س١ < س١ فإن ق(س١) > ق(س١)
 - ثابتاً في [أ، ب] إذا تحقق الشرط: عندما س $< m_{\gamma}$ فإن ق $(m_{\gamma}) = \bar{g}(m_{\gamma})$

♦ اذا كان ق(س) اقترانا متصلا في الفترة [١٥٠]، وقابلا للاشتقاق في الفترة [١٥٠] فان :

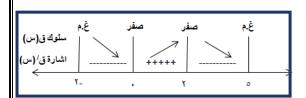
- منحنى الاقتران ق(س) يكون متزايدا في [1>+] اذا كانت $v = (w) > v \vee w \in [1>+]$ منحنى الاقتران ق أي أن : زاوية الميل حادة ، إشارة v - (w) موجبة ، ظل زاوية ميل المماس موجب .
- منحنى الاقتران ق(س) يكون متناقصا في [43 + 1] اذا كانت 0^{-} (س) < 0 س $\in [43 + 1]$ أي أن : زاوية الميل منفرجة ، إشارة $\sigma^{-}(\omega)$ سالبة ، ظل زاوية ميل المماس سالب .
 - منحنی الاقتران ق(س) یکون ثابتا في [43-] اذا کانت 0^- (س)=0 \forall س)=0أي أن : زاوية الميل = صفر ، المماس أفقى يوازي السينات ، ظل زاوية ميل المماس = صفر .

عندما أسمع قوله تعالى: (ولسوف يعطيك ربك فترضى) أشعر براحة وارتب قائمة أحلامي وأمنياتي من جديد

القسم الثائي: حلول تمارين الكتاب

السؤال الأول: حدد فترات التزايد والتناقص لمنحنى الاقتران في الحالات التالية: ـ

$$\bullet$$
فرع أ: \circ (س $)=$ ۳ س 7 س $\in [-736]$


طل
$$v(m)$$
متصل في الفترة $v(m)$ لأنه كثير حدود

$$oldsymbol{v} = (oldsymbol{\omega})$$
 نجعل $oldsymbol{\overline{U}} = (oldsymbol{\omega})$ نجعل $oldsymbol{\overline{U}} = (oldsymbol{\omega})$

$$Y = \omega \cdot \cdot = \omega \iff \cdot = (\omega - 1)\omega \iff \cdot = 1$$

ومن إشارة $\overline{\mathcal{U}}$ (س) في الشكل المجاور:

يكون منحني
$$v(m)$$
 متزايد في الفترة [٢٠٠] ،ومتناقص في الفترتين [٢٠٥] ، [٢٠٠]

$[\pi \cdot \cdot] \ni \omega$ ، $\omega + = (\omega)$

"الأنه حاصل جمع اقترانين متصلين الفترة
$$\pi : [\pi : 0] = \pi$$

$$\pi \cdot \cdot [
ightarrow]$$
 قابل للاشتقاق في الفترة $\pi \cdot \cdot [$

$$\cdot = (m)$$
 و $\cdot = (m)$ بجعل $\cdot = (m)$ $\cdot = (m)$

$$\frac{\pi^{\mathsf{T}}}{\xi} = \omega \iff \frac{\pi^{\mathsf{T}}}{\mathsf{T}} = \omega^{\mathsf{T}} \iff \mathsf{T} = \omega^{\mathsf{T}} = \omega^{\mathsf{T}}$$
 جا

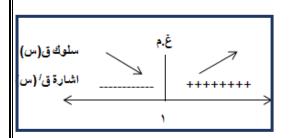
ومن إشارة 🛈 (س) في الشكل المجاور :

يكون منحنى
$$u(m)$$
 متزايد في الفترة $[\pi \circ 1]$ (ملاحظة الفترة لا تجزأ لان الاقتران متصل عند $[\pi \circ 1]$

فرع \leftarrow : $\upsilon(m) = \sqrt{m^{\gamma} - \gamma m + 1}$ ، $m \in \sigma$

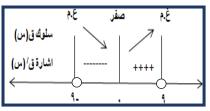
الحل

$$U(m) = \sqrt{m^{2} - 2m + 1} \quad , \quad m \in J$$


$$v(m)$$
 متصل على مجاله ، $v(m)$ قابل للاشتقاق على ح

$$\overline{\mathcal{G}}(\omega) = \frac{\mathsf{Y} - \mathsf{W} \mathsf{Y}}{\mathsf{V} + \mathsf{W} \mathsf{Y} \mathsf{Y}}$$
 ، بجعل $\overline{\mathcal{G}}(\omega) = \mathsf{V}$

$$1 = \omega \leftarrow \cdot = Y - \omega Y \leftarrow$$


ومن إشارة 0 (س) في الشكل المجاور:

 $[1 < \infty - [$ ومتناقص في الفترة [0 < 1] متزايد في الفترة الفترة [0 < 1]

اعداد

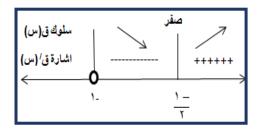
سلوك ق(س) اشارة ق/(س)

$$[\underline{\bullet}, \underline{\bullet}] = \underline{\bullet}, \quad \underline{\bullet} = \underline{\bullet}$$
 ، $\underline{\bullet} = \underline{\bullet}$ ، $\underline{\bullet} = \underline{\bullet}$

$$u = \omega \quad \Leftarrow \quad \iota = (\omega)$$
 المحل بجعل $\overline{\upsilon}$ (س

ومن إشارة 0 (س) في الشكل المجاور:

يكون منحني ن(س) متزايد في الفترة [٩٤٠] ومتناقص في الفترة [-٩٠]


رس +1)، -1 ، فأثبت أن منحنى الاقتران -1 -1 السؤال الثانى -1 ، فأثبت أن منحنى الاقتران -1 -1 السؤال الثانى -1 -1 السؤال الثانى -1

الحل لو
$$(m+1)$$
 متصل عندما $m+1>$ ، أي عندما $m>-1$ ، 1 س متصل $\forall m\in \mathcal{S}$ ، $[-1]$

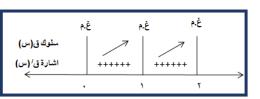
اذن ۲س متصل عندما **س** > - ۱

بالتالی v(m)=1س-لــو (m+1) متصل $\forall m>-1$ لأنه "حاصل طرح اقترانين متصلين".

$$\frac{1+\omega Y}{1+\omega} = \frac{1-Y+\omega Y}{1+\omega} = \frac{1}{1+\omega} - Y = (\omega) \tilde{\upsilon}$$

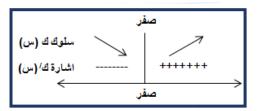
$$u = (w)$$
 قابل للاشتقاق $\forall w > -1$ ، بجعل \overline{u} $(w) = v$

$$\frac{1-}{7} = w \iff 1 = v \implies 7$$


$$\frac{1-}{7} = w \iff 1 = v \implies 7$$

$$\frac{1-}{7} = w \iff 1 = v \implies 7$$

ومن إشارة $\overline{\mathcal{U}}(\mathbf{w})$ في الشكل المجاور فان:


 $race{-1}{-1}$ السؤال الثالث : جد فترات التزايد والتناقص للاقتران $oldsymbol{v}(w)=$ $race{-1}{-1}$ ، $race{-1}{-1}$ ، $race{-1}{-1}$ ، في الفترة [٢٥٠]

 $\bar{v}(1)$ غير موجودة لأن لأنه غير متصل عند $\bar{v}(1)$

ومن إشارة تَ (س) في الشكل المجاور : يكون ت(س)متزايد في الفترتين [١٤٠] و [٢٠١]

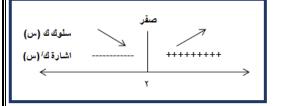
السؤال الرابع: اذا كان $\mathfrak{O}(m)$ ، ه(m)كثيري حدود وكان $\mathfrak{G}(m)=\mathfrak{O}^{7}(m)+$ ه(m)+ه(m)+س ، فحدد فترات التزايد والتناقص لمنحنى الاقتران $\mathfrak{G}(m)$ ، علما بأن $\mathfrak{O}^{7}(m)=$ ه(m)ه(m)= $\mathfrak{O}^{7}(m)$.

الحل ك
$$(w) = Y \mathcal{O}(w) \times \overline{\mathcal{O}}(w) + Y$$
ه $(w) \times \overline{\mathcal{O}}(w) + Y$ الحل ك $(w) \times Y = Y \mathcal{O}(w) \times Y + Y$

$$= 7 \mathcal{U}(\omega) \times a(\omega) - 7 \mathcal{U}(\omega) \times a(\omega) + 7 \omega = 7 \omega$$

$$\cdot \cdot = \omega \leftarrow \cdot = \omega + \cdots + \omega$$
بجعل کی $(\omega) = \omega$

$$]\infty$$
 ومن إشارة $]$ والشكل المجاور $]$ والشكل المجاور $]$ والفترة $]$ والفترة $]$


السؤال الخامس : اذا كان v(m)كثير حدود متزايد في مجاله ، وكان ك $v(m)=v(m^3-3m)$ ، فحدد فترات التزايد والتناقص لمنحنى الاقتران كv(m).

الحل ك(س) اقتران متصل لأنه حاصل تركيب اقترانين كثيري حدود ، ك(س) قابل للاشتقاق

$$\widetilde{U}(w) = \widetilde{U}(w^{7} - 3w) \times (7w - 5) = (7w - 5) \times \widetilde{U}(w^{7} - 3w)$$

$$\widetilde{U}(w) = \widetilde{U}(w) \times U \times (w - w) = (w - w) \times U \times (w - w)$$

$$\cdot < (m)$$
 اما $\overline{\mathcal{G}}$ $(m^7 - 8m) = \cdot$ مستحیل لأن $\mathcal{G}(m)$ متزاید أي أن $\overline{\mathcal{G}}(m) > \cdot$

$$]\infty$$
د کون منحنی ك (m) متزايد في الفترة $[\Upsilon \circ \infty]$. ومتناقص في الفترة $[\Upsilon \circ \infty]$.

السؤال السادس: اذا كان v(m). ه(m) كثيري حدود معروفين في الفترة v(m) ، بحيث أن منحنى قv(m) متناقص في مجاله ، ويقع في الربع الاول ، أثبت أن منحنى الاقتران v(m) متناقص في الفترة v(m) الفترة v(m)

$$[\xi \circ]$$
 المحل $[\psi \circ] \circ [\psi

$$[\xi \circ] \exists m \circ \neg < (m)$$
 ه الربع الأول أي أن ه $(m) > \neg$

$$[\xi \circ]$$
 نفرض أن ك $(m) = \mathcal{U}(m) \times (m)$ ، ، س

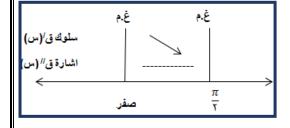
ك (س) اقتران متصل لأنه حاصل ضرب اقترانين كثيري حدود ، ك (س) قابل للاشتقاق في الفترة على العرب اقتران

$$\widetilde{\mathcal{D}}(\omega) = \mathcal{D}(\omega) \times \widetilde{\mathcal{D}}(\omega) + \alpha(\omega) \times \widetilde{\mathcal{D}}(\omega)$$

$$\widetilde{\mathcal{D}}(\omega) = \mathcal{D}(\omega) \times \widetilde{\mathcal{D}}(\omega) \times \widetilde{\mathcal{D}}(\omega)$$

$$\widetilde{\mathcal{D}}(\omega) = \mathcal{D}(\omega) \times \widetilde{\mathcal{D}}(\omega) \times \widetilde{\mathcal{D}}(\omega)$$

$$\left[\xi \circ \right] \ni \omega \ \ \, \forall \quad \text{oritimes} \ \left[\xi \circ \right] \ni \omega \ \ \, \forall \quad \cdot > (\omega)$$
 متناقص $\forall \quad \cdot > (\omega)$


 $\frac{\pi}{7}$ نه قابل للاشتقاق في الفترة ألم على حدود ، $\frac{\pi}{0}$ قابل للاشتقاق في الفترة ألم $\frac{\pi}{7}$ والمرابع القتران متصل لأنه حاصل طرح اقترانين كثيري حدود ، $\frac{\pi}{0}$

$$\bullet = (\omega)^{/\!\!/}$$
 بجعل $\sigma^{/\!\!/}(\omega) = -$ جاس-جتاس ، $\omega \in \frac{\pi}{2}$ ، بجعل $\sigma^{/\!\!/}(\omega) = 0$

إما الربع الثاني
$$m=rac{r}{2}$$
 مرفوض لا ينتمي للفترة

أو الربع الرابع
$$w=rac{ee}{t}$$
 مرفوض لا ينتمي للفترة

ومن إشارة
$$\overline{\mathcal{O}}(\mathbf{w})$$
 في الشكل المجاور :

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي القسم الثالث : اسئلة اثرائية

الاقترانات المتزايدة والمتناقصه

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
Ļ	إذا كان ق $(m) = (m^{7}-1)^{7}$ ($m = 7$) ، فإن ق يكون متناقصاً على الفترة :	1
] ∞ , ,] (7 [, , ,] (2 [, , , -] (7 [, - , ∞ - [(1)	
	الشكل المجاور يمثل اقترانات ،المنحنى الدى يكون متناقص على [ب ،ج]	۲
	أ) ق(س) ب) هـ(س) ج) م(س) د) ع(س)	
Í	1 2 (w)	
	الشكل المحاور بمثل منحني ق(س) على ، ﴿ صُ	٣
	الشكل المجاور يمثل منحنى ق(س) على [المسكل المجاور يمثل منحنى ق(س) على [المسكل المجاور يمثل متزايدا؟	
٦		
	(۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱) (۱)	
	الأداكان تركيب وتعالى المنت تقلق على المعالى والمواديات	٤
ب	[۱۵ب] الهب] الهب] الهبتقاق على المماسات ، وكانت جميع المماسات الداكان ق(س) متصلا على المماسات	L
	لمنحنى ق(س) في تصنع زاوية حادة مع الاتجاه الموجب لمحور السينات ، لإان العبارة الصحيحة	
	من الاتية هي :	
	[اءب] بناقص في ب) ق(س) متزايد في أي (س)	
	ق (س) قراب] قراس) قراب [ان الله في قريد في قر	

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
منزاید علی [۲۰∞ [U [- ۲ ۱۰]، ومتناقص علی [۰۰۲] U] - ∞۰ - ۲]	عین فترات التزاید والتناقص للاقتران ق (س) = $ m^{\gamma} - 3 $	•

لعلمي	سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع ا	
	إذا كان الاقتران ق (س) كثير حدود معرفاً على [٢ ، ٦] ويقع منحناه في الربع الأول ومتناقص على مجاله ، وكان الاقتران هـ(س) = Λ ـ س ، بين أن الاقتران كان الاقتران كان س) = (ق × هـ) (س) متناقص في [٢ ، ٦]	۲
	اذا كان ق ،هـ اقترانين كثيري الحدود متزايد على ح ، وكان ق $(m) < \cdot > \forall m \in \mathcal{S}$ اثبت ان الاقتران $((ق \circ a) (m))^{Y}$	٣
ق متزايد في الفترتين [- ٨٠٠][٨٠∞[•	£
ق مُتناقص في الفترتين $[\Lambda - \infty - [\Lambda - \Lambda]]$	اذا کان ق $(m) = (m^{7} - 2)^{\frac{1}{n}}$ فجد فترات النزاید والنناقص للاقتران ق (m)	
ق متزاید ف <i>ي</i> الفترة [—۱ ، ۱]	اذا كان ق $(m) = \frac{m}{1+m}$ معرفا على $[-1 \circ 1]$ ، جد مجالات التزايد والتناقص للقتران ق .	0
	ق(س) ، هـ(س) كثيري حدود معرفان على [١،٦] ويقع منحنى كل منهما في الربع الاول فاذا كان ق(س) متزايدا في مجاله ، هـ (س) متناقصا في مجاله ، هـ (س) خ ، ،	٦
	أثبت أن : $\frac{\mathcal{O}}{\mathbf{a}}(m)$ متزايدا في [٦٤١]	
ق متزايد في الفترتين $[-\infty, -1]$ ق متناقص في الفترة ق متناقص أي الفترة $[-\infty, -1]$	اذا كان ق $(m)= m-1 $ $(m+7)$ أوجد مجالات تزايد والتناقص للاقتران ق (m)	V
ق متزايد]۲٬۰[ق متناقص[۲٫∞[النقط الحرجة عند	اذا كان ق $(m) = $ لـو $(m-m^{\gamma})$ جد قيم m الحرجة ومجالات تزايد وتناقص الاقترن .	۸
$\frac{1}{7}$ س= $\frac{1}{7}$ ق متزاید فی $[7,\infty[$ ق متناقص $]-\infty$ ہ- $[7]$	عين مجالات التزايد التناقص للاقتران ق $(w)=\sqrt{w^2-7}$ ا $w \leq 7$	٩
ق متزاید]-∞،۲] ق متناقص [۲،∞[اذا كان $w=w^{rac{1}{m}}\left(Y-w ight) ^{rac{1}{m}}$ فأوجد فترات التزايد والتناقص للاقتران .	١.

القسم الرابع: اسئلة اثرائية

الجواب	القسم الأول: اجب عن الاسئلة التالية:	#
متزاید]—∞،۰] متناقص [۰،۰]	ق(س) ، هـ(س) كثيري حدود متزايدين على ح وكان ق $(m) < 0$ س $\in \mathcal{S}$ جد مجالات التزايد والتناقص ان وجدت للاقتران $\left(\left(\mathbb{S} \circ \mathbb{A}\right)\left(\mathbb{S}^{T}\right)\right)^{T}$	•
متناقص على [٤٤٢]	الشكل المجاور يمثل منحنى ه(س)على $[2,3]$ وكان ق $(m) = \frac{a(m)}{1-m}$ جد مجالات تزايد والتناقص لمنحنى ق (m)	*
متزاید علی [-۳،-۱]	اذا كان ق (m) اقتران كثير حدود ومتزايد على $[-73-1]$ ويقع في الربع الثاني و كان ق $(m) imes a$ ، جد فترات التزايد والتناقص لمنحنى a (m)	٣

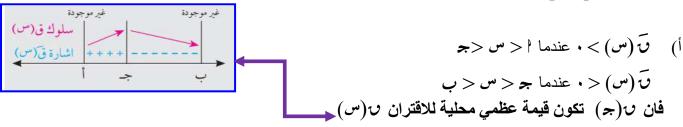
كر اساة الكاماء

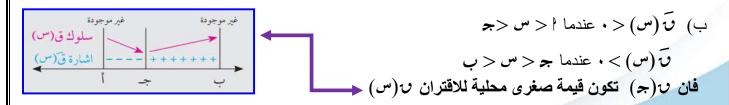
المحدة الثانية / تطبيقات التخاضل

الدرس الثالث / القيم القصوى

القسم الأول: الملخص

تعريف القيم الصغرى والعظمى المحلية:


ليكن ق(س) اقتراناً معرفاً على المجال ع، ولتكن جـ ∈ع، عندها يكون للاقتران ق(س):


- آ قيمة عظمى محلية عند س = جـ هي ق(جـ) إذا وجدت فترة مفتوحة (ف) تحوي جـ،
 بحيث أن ق(جـ) ≥ ق(س) لجميع قيم س ∈ (ف ∩ع)
- آقیمة صغری محلیة عند س = جـ هي ق(جـ) إذا و جدت فترة مفتوحة (ف) تحوي جـ،
 بحیث أن ق(جـ) ≤ ق(س) لجمیع قیم س ∈ (ف ∩ع)
- ٣ قيمة عظمي مطلقة عند س = جهي ق (ج) إذا كانت ق (ج) ك ق (س) لجميع قيم س =ع
- ٤ قيمة صغرى مطلقة عند س = جـ هي ق(جـ) إذا كانت ق(جـ) ≤ ق(س) لجميع قيم س ∈ع

ملاحظة: تسمى كل من القيم العظمي والقيم الصغرى قيماً قصوى، سواء أكانت محلية أم مطلقة.

اختبار المشتقة الأولى لتعيين القيم القصوى:

اذا كانت اذا كان v(m) اقتران متصل على فترة مغلقة [4] ب وكانت (a,b) نقطة حرجة للاقتران v(m) المتصل عند a,b أيب فانه اذا كان : (تأمل الرسومات الآتية ستلاحظ)

تعريف:

تسمى النقطة (أ ، ق(أ)) نقطة حرجة للاقتران ق(س) إذا كانت:

- (س)ق ا (س) أ € مجال
- ▼ قَ(أ) = ٠ أو قَ(أ) غير موجودة.

نظرية القيم القصوى المطلقة:

اذا كان v(m) اقتران متصل على فترة مغلقة [1, 2, m] فان v(m)يتخذ قيما قصوى مطلقة في [1, 2, m]

طريقة ايجادها: نوجد أو لامجموعة قيم س النقاط الحرجة ثم نعوض بالاقتران ، أكبر قيمة من الصور تكون قيمة عظمي مطلقة بينما أصغر قيمة من الصور تكون قيمة صغرى مطلقة .

كل الامتنان للذين يزرعون فرحا في قلوب الاخرين

القسم الثائي: حلول تمارين الكتاب

السؤال الأول: جد النقط الحرجة للإقترانات التالية:

$$\underline{\underline{\omega}} = \underline{\underline{U}} : U(\omega) = \frac{1}{2} \omega^{-1} - \omega^{-1} + \frac{1}{2} \quad \omega \in [-7, 7]$$

$${\cal O}(m)$$
 متصل في الفترة ${\cal O}(m)$ لانه كثير حدود

$$oldsymbol{i} oldsymbol{i} $

$$\bullet = (\Upsilon - \omega)\omega \iff \bullet = \omega \Upsilon - \Upsilon \omega$$

$$T = \omega$$
 $T = \omega$ 3.7 عند $T = \omega$

النقاط الحرجة هي
$$(\cdot, \upsilon(\cdot)) = (\cdot, \upsilon(\cdot))$$
 ، $(\tau, \upsilon(\tau)) = (\tau, \upsilon(\tau)) = (\tau, \upsilon(\tau))$ ، $(\tau, \upsilon(\tau)) = (\tau, \upsilon(\tau))$ ، $(\tau, \upsilon(\tau)) = (\tau, \upsilon(\tau))$

$$(\omega) = \omega^{\frac{1}{p}}$$
، $\omega \in [-\lambda \cdot \lambda]$ فرع $\omega : \omega$ الفرع ω (ω) متصل في الفرة $[-\lambda \cdot \lambda]$

$$\tilde{U}(\omega) = \frac{\gamma}{m} \omega = \frac{\gamma}{m} = \frac{\gamma}{m} \omega = \frac{\gamma}{m} \omega = \frac{\gamma}{m} \omega = (\omega)$$

$$\tilde{U}(\omega) = \frac{\gamma}{m} \omega = \frac{\gamma}{m} \omega = \frac{\gamma}{m} \omega = \frac{\gamma}{m} \omega = (\omega)$$

$$\tilde{U}(\omega) = \gamma \omega = \omega$$

$$\tilde{U}(\omega) = \gamma \omega = \omega$$

$$\tilde{U}(\omega) = \gamma \omega$$

$$\tilde{$$

$$0$$
ن (س) غ. γ عند س $=$ Λ ، س $=$ Λ

$$(\xi \wedge \Lambda) = ((\Lambda) \cup (\Lambda))$$
 ، $(\xi \wedge \Lambda -) = ((\Lambda -) \cup (\Lambda -))$ النقاط الحرجة هي

$$(\cdot \cdot \cdot) = (\cdot) \circ \cdot \cdot$$

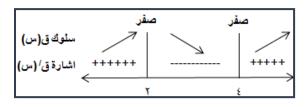
لسؤال الثانى: في التمارين من ١-٦ جد القيم العظمى و الصغرى المحلية (ان وجدت):

فرع أ:
$$v(m) = m^{7} - pm^{7} + 37m$$
 ، $m \in 9$

$$v(m)$$
 متصل على ح لانه كثير حدود

$$u(m)$$
 متصل على ح لانه كثير حدود $u(m) = mm^{7} - \Lambda + 1m + 37$ ، نجعل $u(m) = 0$

$$\cdot = \wedge + \omega \cdot - ^{\mathsf{T}} \omega \leftarrow \cdot = \mathsf{T} \cdot \mathsf{E} + \omega \cdot \wedge - ^{\mathsf{T}} \omega \mathsf{T}$$

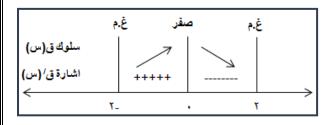

$$| \mathsf{T} = \mathsf{\omega} | \cdot | \mathsf{E} = \mathsf{\omega} | \leftarrow \mathsf{E} = (\mathsf{T} - \mathsf{\omega})(\mathsf{E} - \mathsf{\omega}) \leftarrow \mathsf{E}$$

مجموعة قيم س التي يكون عندها نقط حرجة هي $\{7<7\}$

من اشارة
$$\overline{\mathcal{G}}$$
 (m) في الشكل المجاور :

عند
$$w = Y$$
 يوجد قيمة عظمى محلية قيمتها $v(Y) = Y$

عند
$$m=3$$
 یوجد قیمة صغری محلیة قیمتها $\sigma(\xi)=1$



فرع ب: ب (س) = ١/٤ - س ٢

$$1 \leq r$$
 المحل يجب أن نجد مجال $\sigma(m) \Rightarrow s - m$

$$[Y_i Y_i -]$$
 متصل على $[Y_i Y_i -]$

$$\overline{\psi}(m)$$
 غير موجودة عند $m=-7$ ، $m=7$

جموعة قيم س التي يكون عندها نقط حرجة هي $\{-7 \cdot 5 \cdot 7 \cdot 7\}$ ،من اشارة $\overline{U}(m)$ في الشكل المجاور:

عند س
$$=-$$
۲ يوجد قيمة صغرى محلية قيمتها $arphi(-$ ۲ $)=\cdot$ (بداية تزايد)

$$\Upsilon = (\cdot)$$
عند س = \cdot يوجد قيمة عظمى محلية قيمتها σ

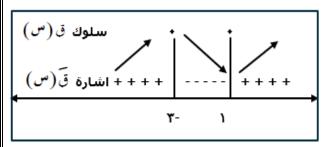
عند س
$$Y=$$
 کیوجد قیمة صغری محلیة قیمتها $\mathcal{U}(Y)=$ وبدایة تناقص

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي فرع ج $(m)=(m^{\gamma}-1)$ ه (m)=(m) فرع ج

$$oldsymbol{i} oldsymbol{i} $

$$($$
 $= \cdot \cdot)$ $= \cdot \cdot)$

$$\bullet = \Upsilon - \Upsilon + \Upsilon$$
أو $\Upsilon + \Upsilon$


$$\boxed{1=\omega} \; \mathsf{c} \; \boxed{\Psi-=\omega} \; \leftarrow \mathsf{c} = (1-\omega)(\Psi+\omega)$$

 $\{167 - 168\}$ هي مس التي يكون عندها نقط حرجة هي

من اشارة 0 (س) في الشكل المجاور:

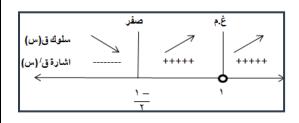
عند س=-سیوجد قیمة عظمی محلیة قیمتها $\mathfrak{T}(-)=$ ه $^{-}$ عند m=1 یوجد قیمة صغری محلیة قیمتها $\mathfrak{I}(1)=-1$ هـ

وهي قيم مطلقة حسب أتعلم $\frac{1}{2}$ (اذن هذه هي الوحيدة)

$$(س)$$
 متصل على $2-\{1\}$

$$1 + \omega + {}^{7}\omega = \frac{(1 + \omega + {}^{7}\omega)(1 - \omega)}{1 - \omega} = \frac{1 - {}^{7}\omega}{1 - \omega} = (\omega)\omega$$

$$\cdot = (m)$$
 نجعل $\overline{\mathcal{G}}(m) = \gamma$


$$(\omega)$$
 کس $\omega = \frac{1-1}{7} = \omega = 1 \longrightarrow \omega = \frac{1-1}{7} \in A$ کاس ω

$$\widetilde{\mathcal{O}}(m)$$
 غير موجودة عند س

$$\left\{ \frac{1-\zeta}{\zeta} \right\}$$
 هي س التي يكون عندها نقط حرجة هي

من اشارة في الشكل المجاور

$$abla=\left(rac{1-}{7}
ight)$$
عند $abla=rac{1-}{7}$ يوجد قيمة صغرى محلية قيمتها $abla$

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي فرع هـ: $\sigma(m) = \pi$

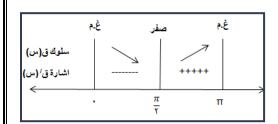
الحل $\sigma(m)$ متصل في الفترة $\pi(m)$ (حاصل طرح اقترانين متصلين)

نجعل $\overline{U}(m) = - + + = - +$

-1 جاYس = 0 جاYس = 0

$$]\pi$$
 ہو $\pi=0$ ہو $\pi=0$ اما $\pi=0$ ہو ا

 $\pi \cdot (\exists \pi = \mathscr{M} \Leftarrow \pi \mathsf{Y} = \mathscr{M} \mathsf{Y})$


 $\left\{rac{\pi}{ au}$ د π د، $\pi=\pi$ می موجودهٔ عند س $\pi=\pi$ می موجه قیم س التی یکون عندها نقط حرجهٔ هی $\pi=\pi$

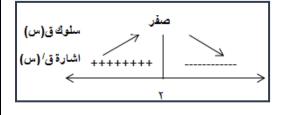
من اشارة \overline{U} (س) في الشكل المجاور:

عند $w=\cdot$ يوجد قيمة عظمى محلية قيمتها $v(\cdot)=\cdot$ (بداية تناقص)

 $0 - - (rac{\pi}{4})$ عند س $rac{\pi}{4}$ یوجد قیمة صغری محلیة قیمتها $rac{\pi}{4}$

عند س $\pi=$ یوجد قیمة صغری محلیة قیمتها $\upsilon=(\pi)$ (نهایة تزاید)

فرع و : $\upsilon(\omega) = a^{-(\omega-\gamma)}$ ، $\omega \in \mathcal{S}$


الحل على ح

$$oldsymbol{\cdot} = (oldsymbol{\omega})$$
 جعل $oldsymbol{\overline{\upsilon}}$ (س $-$ ۲) ه $(-oldsymbol{\omega})$ بنجعل $oldsymbol{\overline{\upsilon}}$

$$oldsymbol{\cdot} = oldsymbol{\cdot}^{\scriptscriptstyle (w-Y)}$$
ه $(Y-w)$ ه $(Y-w)$

$$Y = \omega \leftarrow \cdot = (Y - \omega) \leftarrow \gamma$$
اِما

 $\{\mathsf{T}^{}\}$ مجموعة قيم س التي يكون عندها نقط حرجة هي

من اشارة \overline{U} (س) في الشكل المجاور:

عند m=7 يوجد قيمة عظمى محلية قيمتها $\mathfrak{V}(\mathsf{T})=\mathsf{T}$

السؤال الثالث : جد أكبر وأصغر قيمة (ان وجدت) لكل من الاقترانات الآتية :

$$\cdot = (m)$$
 بجعل \overline{U} بجعل \overline{U} بجعل \overline{U} بجعل \overline{U} بجعل \overline{U}

$$7$$
د، $< m < 7$ فان $7 m = 0$ خند $0 < m < 1$ فان $7 m = 0$ فان $7 m = 0$ عند $0 < m < 1$

$$ho$$
عند $ho < m < m$ فان $ho = m \iff m > m$ عند $ho > m > m$

$$\bar{\upsilon}(\Upsilon)$$
 غ. Υ لان $(\bar{\upsilon}(\Upsilon)^{+}
eq \bar{\upsilon}(\Upsilon)^{-}$

$$\overline{\mathcal{O}}(m)$$
 غ. γ عند $m=\gamma$ ، $m=\Upsilon$ (نقاط طرفیة)

أصغر قيمة للاقتران هي
$$arphi(\cdot)=\cdot o o (\cdot)=\cdot$$
 قيمة صغرى مطلقة

أكبر قيمة للاقتران هي arphi(au) = 1 au o arphi(au) = 1 قيمة عظمى مطلقة "باستخدام نظرية القيمة القصوى المطلقة "

 \bullet فرع \bullet : \circ (س) = ه \circ – ه \circ – ه \circ

$$\mathbb{V}^{\mathsf{o}}(\mathbb{P}) = \mathbb{A} \quad \text{if } \mathbb{P} = \mathbb{P}^{\mathsf{o}} = \mathbb{P}^{\mathsf{o}} = \mathbb{P}^{\mathsf{o}} = \mathbb{P}^{\mathsf{o}}$$

$$\cdot = (m)$$
 بجعل \bar{v}

$$\overline{U}(\cdot)$$
، $\overline{U}(\tau)$ غ. γ (نقاط طرفیة)

مجموعة قيم س التي يكون عندها نقط حرجة هي (٥١ ١٥ ٣)

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

ویکون
$$\upsilon(\cdot) = 1$$
 ، $\upsilon(\cdot) = \varepsilon$ " $\upsilon(\tau) = \varepsilon$ ویکون عرب ا

أصغر قيمة للاقتران هي $v(1)=\cdots$ $v(1)=\cdots$ هي قيمة صغرى مطلقة

أكبر قيمة للاقتران هي v(T)=ه $^{"}-$ هه $\rightarrow v(T)=$ ه $^{"}-$ ه هي قيمة عظمي مطلقة

" باستخدام نظرية القيمة القصوى المطلقة "

 $\left[\frac{\pi^{\intercal}}{\Upsilon} \cdot \frac{\pi}{\Upsilon}\right] \ni \omega \quad \omega^{\intercal}$ منا $\sigma = \pi^{\intercal} - \omega$ منا $\sigma = \pi^{\intercal} - \omega$

الحل $\sigma(m)$ متصل في الفترة $\left[\frac{\pi^{\gamma}}{\gamma} \in \frac{\pi}{\gamma}\right]$ (حاصل طرح اقترانين متصلين)

 $\left|\frac{\pi^{\mathsf{w}}}{\mathsf{v}} \mathsf{c} \frac{\pi}{\mathsf{v}}\right| \Rightarrow \mathsf{w} \quad \mathsf{w} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v} + \pi \mathsf{v}^{\mathsf{v}} \mathsf{v} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v} = -\pi \mathsf{v}^{\mathsf{v}} \mathsf{v}} \mathsf{v}^{\mathsf{v}} \mathsf{v}$

 $\cdot = (m) \overline{0}$ بجعل به با

-جاس+جتا 7 س جاس = 7 جاس 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7

-= \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow

 $\left]\frac{\pi^{r}}{r}\epsilon^{\pi}\right[\ni \pi=\omega$

 $\left]\frac{\pi \Upsilon}{\Upsilon} \epsilon \frac{\pi}{\Upsilon} \right[\Rightarrow \pi \Upsilon = \omega$

(نقاط طرفیة) خ.ک $(\frac{\pi \Upsilon}{\Upsilon})$ ن د $(\frac{\pi}{\Upsilon})$ ن

 $\left\{\pi \in \frac{\pi^{\gamma}}{\gamma} \in \frac{\pi}{\gamma}\right\}$ هي التي يكون عندها نقط حرجة هي التي يكون عندها

 $\cdot = (\frac{\pi \Upsilon}{\Upsilon}) \upsilon \cdot \frac{\Upsilon -}{\Upsilon} = (\pi) \upsilon \cdot \cdot = (\frac{\pi}{\Upsilon}) \upsilon$

أكبر قيمة للاقتران هي $v=(rac{\pi}{7})$ $extstyle au o (rac{\pi}{7})$ هي قيمة عظمى مطلقة

أكبر قيمة للاقتران هي $v=(rac{\pi au}{ au})$ $au \leftarrow v=(rac{\pi au}{ au})$ هي قيمة عظمى مطلقة

أصغر قيمة للاقتران هي $arphi = (\pi) + rac{\mathsf{Y} - \mathsf{Y}}{\mathsf{W}} = (\pi)$ هي قيمة صغرى مطلقة

" باستخدام نظرية القيمة القصوى المطلقة "

السؤال الرابع: اذا كان $v(m)=m^{2}+m^{2}+m^{2}+m^{2}$ اقتران له قيمة عظمى محلية عند $m=m^{2}$

١ ، وقيمة صغرى محلية عند س = ٣ ، ما قيمة كل من الثابتين أ ، ب ؟

$$\mathbf{q} + \mathbf{p} = \mathbf{q} + \mathbf{p} + \mathbf{q} +$$

 $au = 9 + \gamma + \gamma = \gamma = 0$ قیمة عظمی محلیة عند س $au = 1 + \gamma = \gamma$

$$au= - rac{1}{2}$$
قيمة صغرى محلية عند س $au= - rac{1}{2} = - rac{1}{2} = - rac{1}{2}$ قيمة صغرى محلية عند س

بطرح المعادلة (١) من المعادلة (٢) وينتج:

بالتعويض في المعادلة (١):
$$= 7 = 7$$

$$7-=$$
 \rightarrow $7-=$ \rightarrow $7+$ 7

السؤال الخامس : أثبت أن المقدار كاس 3 س 2 2 مالب دائما .

الحل نفرض أن
$$\mathfrak{G}(w)=8$$
س $^{7}-w^{2}-1$

 ${oldsymbol \sigma}({oldsymbol w})$ متصل على ح ${oldsymbol d}$ لأنه كثير حدود وقابل للاشتقاق

$$oldsymbol{\iota} = (oldsymbol{\omega})$$
 بوضع $oldsymbol{\iota} = (oldsymbol{\omega})$ ، بوضع $oldsymbol{\iota} = (oldsymbol{\omega})$

$$\cdot = (m-m)^{\intercal}$$
 کس $^{\intercal} = m$ کا کس $^{\intercal} = m$ کا کس $^{\intercal} = m$

من اشارة $\overline{\mathcal{O}}(m)$ في الشكل المجاور:

$$au= au$$
عند $m= au$ يوجد قيمة عظمى محلية قيمتها $arphi(au)=- au$

(من أتعلم
$$\stackrel{\gamma_9}{\omega}$$
) فان $\mathfrak{V}(\mathfrak{T})=-\mathsf{T}$ هي قيمة عظمى مطلقة وهي سالبة (أي أن أعظم قيمة سالبة) $\Rightarrow \mathfrak{V}(\mathfrak{T})$ سالبا دائما $\Rightarrow \mathfrak{V}(\mathfrak{T})$ سالبا دائما

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي القسم الثالث : اسئلة اثرائية

القيم القصوى

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
د	اذا كان ق (س) اقتراناً معرفاً على [، ، ٣] وكانت ق (س) = (س	1
ب	 أ) { · · · · · ، ، ، ، ، ، ، ، ، ، ، ، ، ،	۲
٥	إذا كان ق (س) معرفاً على ح ، وكانت ق رس) = $\frac{m^7+7m}{m^7+7m}$ ، فإن عدد النقط الحرجة للاقتران ق (س) يساوي : أ. صفر ب. ١ ج. ٢ د. π	٣
ب	إذا كان ق (س) = $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$ ، س $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$ ، فإن جميع قيم س التي تكون عندها نقط حرجة للاقتران ق(س) : (، ، ۲) $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$ ج) $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$ ب ، ۲ ب $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$ ب ، ۲ د ب $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$ ب ، ۲ د ب $\begin{bmatrix} 7 & 1 \\ 1 & 1 \end{bmatrix}$	٤
ب	لیکن ق (س) $=\sqrt{\frac{2}{3}-m^{7}}$ ، س $\in [-7, 7]$ فإن قیمة س التي یکون عندها للاقتران ق (س) قیمة عظمی مطلقة هي : أ) $=7$ ب) صفر ج) ۱ د) ۲	٥
ب	ان مجموعة قيم س التي يكون للاقتران ق (س) $=\sqrt{-v^2-v^2}$ نقطاً حرجة هي : (۱) $\{v,v,v\}$ ب) $\{v,v,v\}$ ج) $\{v,v\}$ د) $\{v,v\}$ ا	٦
€	اذا کان ق (m) معرفا علی الفترة ، $[n, n]$ بحیث $n = \frac{m-7}{m+1}$ ، فأن مجموعة قیم س التی یکون عندها للاقتران ق (m) نقطا حرجة هي : $n = n$ بنا $n = n$ بنا $n = n$ بخاره المحترد و المحترد	

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
متزاید عندما س > ۰ متناقص عندما س < ۰ قیمة صغری محلیة عند س= ۰ ق(۰) = ۰	عین فترات التزاید والتناقص للاقتران ق (س) = $\frac{m^{\gamma}}{m^{\gamma}+\gamma}$ ثم أوجد القیم القصوی للاقتران	•
$(7) \{ -7 \} $ $(7) \{ -7 \} $ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$ $(7) \{ -7 \} \}$	اذا كان ق $(m) = 3m - \frac{1}{7}m^3$ $[-707]$ ، أوجد: ۱) النقاط الحرجة. ۲) فترات التزايد والتناقص. ۳) القيم القصوى المطلقة للاقتران ق.	۲

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
	اذا كان ق(س) كثير حدود له ٤ نقاط حرجة في [١٥٠] ، اثبت انه يوجد حل	1
	$]$ للمعادلة ق $\mathscr{D}(m)=$ في $]$ ا \mathfrak{d} ا	
	اثبت ان ق $(m)=m^3-3$ س موجب دائما	۲
	اذا كان ق(س) كثير حدود من الدرجة الثالثة له قيمه قصوى واحدة فقط	٣
	عند س= و اثبت ان له نقطه انعطاف عند س= و ؟	
۱) صغری محلیة (-۱،ق(-۱) محلیه عظمی(۲،ق(۲))	اذا کان ق $(-1)=$ ق $(7)=$ ، ق $(m)=-$ س أوجد لمنحنى ق (m) :	٤
۲)ق متزاید فی [-۲۰۱]	١) نقط القيم القصوى ونوعها .	
ق متناقص في]— ∞، — [ا [۲، ∞[٢) فترات التزايد والتناقص .	
ر ۲۰۰۰ر ۳)مقعر للاعلى]— ∞، ۰]	٣) فترات التقعر للاعلى و للاسفل ونقط الانعطاف ان وجدت	
مقعر للاسفل[،،∞[ملاحظة / فرع ٣ للدرس الرابع	
(۰۰ق(۰))		

الوحدة الثانية /تطبيعات التغاذل

الدرس الرابع التقعر ونقط الانعطاف

القسم الأول: الملخص

تعریف:

يقال لمنحنى الاقتران ق(س) أنه مقعر للأعلى في الفترة [أ، ب] إذا كان واقعاً فوق جميع مماساته في الفترة] أ، ب[وأنه مقعر للأسفل في الفترة [أ، ب] إذا كان واقعاً تحت جميع مماساته في الفترة] أ، ب[.

اختبار التقعر باستخدام المشتقة الثانية:

۱. اذا كان ق(س) اقترانا متصلا في الفترة [4] ب[4] وكان [4] معرفا في الفترة [4] ب[4] فان منحنى ق(س) يكون :- ١. مقعرا لأعلى في الفترة [4] ب[4] اذا كانت [4] ب[4] ب[4] ب[4] ب[4] ب[4] ب[4] ب[4] با ناعت و والمال المال في الفترة [4] با ناعت و والمال المال في الفترة [4] با ناعت و والمال المال في الفترة [4] با ناعت و والمال في الفترة المال في الفترة [4] با ناعت و والمال في الفترة المال في الفترة ألمال في الفترة ألمال في الفترة المال في الفترة ألمال في الفترة أ

تعریف: ۱. تسمی النقطة (= , v =) نقطة انعطاف للاقتران ق(w = v =) اذا كان :

- ق(س) اقترانا متصلا عند س = جـ
- يغير الاقتران اتجاه تقعر منحناه عند س = جمن الأعلى الى الأسفل، أو العكس.
- ٢. زاوية الانعطاف: هي زاوية ميل المماس المرسوم لمنحنى ق(س) عند نقطة الانعطاف.
- ٣. إذا كانت (> 0)نقطة انعطاف وكان (> 0) فتسمى النقطة تقطه انعطاف أفقي.
 - نظریة : اذا کان ق(س) اقترانا قابلا للاشتقاق علی فترة مفتوحة تحتوی جـ، و کان v = (-1) = 0 فان :
 - $\cdot > ($ ج) قيمة عظمى محلية، إذا كانت v = (ج)
 - ۰ < (ج) قیمة صغری محلیة، إذا كانت $v^{-}(z)$
 - ۳. يفشل تطبيق الاختبار اذا كان $v^{*}(=)$ أو $v^{*}(=)$ غير موجودة $v^{*}(=)$

القسم الثائي: حلول تمارين الكتاب

السؤال الأول: عين فترات التقعر للأعلى و الأسفل لمحنى الاقتران في الحالات الآتية:

$$\cdot = (\Upsilon + \omega)(\xi - \omega \Upsilon - {}^{\Upsilon}\omega) \Leftarrow$$

$$1-=\omega$$
 ($\xi=\omega$ \leftarrow $\cdot=(1+\omega)(\xi-\omega)$ \leftarrow $\cdot=\xi-\omega$ -1

$$|Y-w| \leftarrow v = Y + w$$

ومن إشارة
$$v^{-1}$$
 (س) في الشكل المجاور يكون منحنى ق (w) :

مفعرا للأعلى في الفترتين
$$[-7,-1]$$
 ، $[5,\infty]$ مقعرا للأسفل في الفترتين $[-1,3]$ ، $]-\infty$

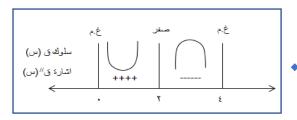
$$\left[\frac{\pi}{\gamma}, \frac{\pi}{\gamma} - \left[\ni \omega : \omega - \omega \right] = + \omega \right]$$
فرع ب : قدم الس

$$\left[\frac{\pi}{7}, \frac{\pi}{7} - \left[\Rightarrow \omega + 1 - \omega \right] = + \pi \right]$$
 المحل ف $\sqrt{7}$

$$\left[\frac{\pi}{\gamma},\frac{\pi}{\gamma}-\right]$$
 إما $\omega=\eta=0$ إما $\pi=\eta=0$ أو $\pi=\eta=0$

ومن إشارة فه السلام المجاور يكون منحني ق(س) :

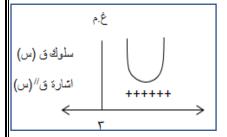
$$\left[\frac{\pi}{7} \cdot \cdot \right]$$
 ، $\left[\cdot \cdot \frac{\pi}{7} - \right]$ مقعرا للأسفل في الفترتين


$[\xi \cdot \cdot] \ni w$ ہو ج $[\xi \cdot \cdot] = \xi w^{"} + w$ ہو ہو ا

$$]$$
الحل $[(w)]$ متصل على مجاله لأنه كثير حدود $[(w)]$ $[(w)]$ الحل $[(w)]$ الحل متصل على مجاله لأنه كثير حدود $[(w)]$

$$oldsymbol{\circ}=(\omega)$$
 و $oldsymbol{\circ}=(\omega)$ و $oldsymbol{\circ}=(\omega)$ و $oldsymbol{\circ}=(\omega)$ و $oldsymbol{\circ}=(\omega)$ و $oldsymbol{\circ}=(\omega)$

$$Y = \omega$$
 $\leftarrow \cdot = (\omega - Y)\omega + Y \Leftrightarrow \cdot$


مقعرا للأسفل في الفترة [٢ . ٤] ، ومقعرا للأعلى في الفترة [٢٠٠].

$$\Psi \leq \omega : \psi(\omega) = (\omega - \gamma)^{\frac{\gamma}{\gamma}}$$
 ، $\omega \geq \gamma$

$$\frac{\overline{\Upsilon}(W-W)}{\|W-W\|} = \sqrt{\|W-W\|^{\frac{N}{2}}} = \sqrt{\|W-W\|^{\frac{N}{2}}}$$

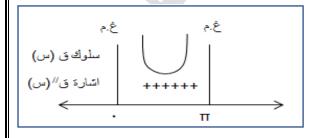
$$\bullet \neq (\omega)^{/\!\!/} \vartheta \circ \frac{\Upsilon}{\overline{\Upsilon - \omega} / \xi} = (\omega)^{/\!\!/} \vartheta \Leftarrow] \infty \circ \Upsilon \left[\circ \frac{1}{\Upsilon} - (\Upsilon - \omega) \frac{\Upsilon}{\xi} = (\omega)^{/\!\!/} \vartheta$$

يكون منحنى الاقتران ق(س) مقعرا للأعلى في الفترة [٣ ، ∞ [

$[\pi \cdot \cdot] \ni \omega \cdot \frac{\omega}{\gamma}$ ہے $= (\omega)$

الحل

$$\pi \cdot [\exists \omega : \frac{\omega}{\gamma} : \frac{1}{\gamma} = (\omega)]$$


$$\pi \cdot [\exists \omega : \frac{\omega}{2}] = \frac{1}{2} = (\omega)$$

$$\bullet = \frac{\omega}{\gamma}
 = \bullet \Rightarrow -\frac{1}{\xi}
 = \bullet \Rightarrow -\frac{1}{\gamma}
 = \bullet \Rightarrow -\frac{1}{\xi}$$
 بوضع $\bullet = \bullet \Rightarrow -\frac{1}{\gamma}
 = \bullet \Rightarrow -\frac{1}{\xi}
 = \bullet \Rightarrow -\frac{1}{\gamma}
 = \bullet \Rightarrow -\frac{1}{\xi}
 = \bullet \Rightarrow -\frac{1}{\zeta}
 = -\frac$

$$]\pi$$
 ، $\cdot [\ni \pi = \pi \circ \pi] = \frac{\omega}{7}$ او

ومن إشارة في (س) في الشكل المجاور يكون منحني ق(س):

 $[\pi :]$ مقعرا للأعلى على الفترة

$$[\pi Y \cdot \cdot] \ni \omega$$
 و جتاس ، س $\in [\pi Y \cdot \cdot]$

$$\pi$$
۲ (س $=$ ه π جاس + جناس ه π

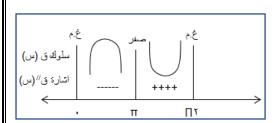
$$\pi$$
۲ ، $\sqrt{} \ni \omega$ با π π π π π π π π π

$$]\pi$$
۲، $[\exists \pi = \emptyset \Leftarrow \neg = \emptyset]$ ما ه $\pi = \emptyset$ مستحیل ، أو جاس

$$\left[\pi$$
۲ ، $\pi
ight]$ مقعرا للأعلى غلى

$$[\pi \cdot \cdot]$$
مقعرا للأسفل على

$$\left\{ \begin{array}{l}
 m \geq m \geq 1 \\
 \underline{m} = m \leq m \leq 0
 \end{array} \right\}$$
 $= (m)$ $= (m)$ $= (m)$ $= (m)$

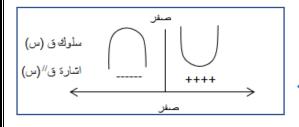

$$\mathfrak{o}(w)$$
 غير متصل عند $w=\pi$ ومنها $\mathfrak{o}'(\pi)$ غ $\mathfrak{o}(w)$

m > m > 1 عندما m > m > m

ومن إشارة v^{-1} (س) في الشكل المجاور يكون منحنى ق(w) :

مقعرا للأعلى في الفترة ٣٤،٥] ،

بينما في الفترة [١، ٣] ليس مقعرا للأعلى أو للأسفل


السؤال الثاني: حدد نقاط الانعطاف للاقتران ق(س) في الحالات الاتيم رس وجدت:

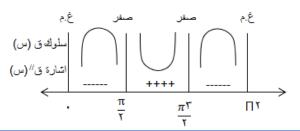
فرع أ: $(w) = w^{7} + w$

الحل
$$\mathfrak{o}(m)$$
 متصل لأنه كثير حدود

$$oldsymbol{v}=oldsymbol{v}$$

كما يتضح من إشارة فه ً (س) في الشكل المجاور:

 $[\pi$ ۲، متصل في الفترة $[\pi$ ۲، همتصل في الفترة


$$]\pi$$
۲ ، $\cdot[\ni$ س ، س \in ا ، بالتاني فه π ا ، بالتاني فه π ا ، π ۲ ، π ا ، π ۲ ، π ا هم نام π

$$rac{\sigma}{\sigma}$$
و متصل عند کل من $\sigma=rac{\pi}{\gamma}$ ، $\sigma=rac{\pi}{\gamma}$ ، ویغیر من اتجاه تقعره عندها کما یتضح من إشارة $\sigma=rac{\pi}{\gamma}$

الشكل المجاور .

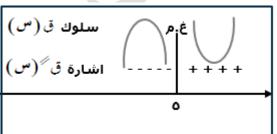
$$\left(\left(\frac{\pi^{\gamma}}{\gamma}\right)$$
، $\left(\left(\frac{\pi}{\gamma}\right)$ ، $\left(\left(\frac{\pi}{\gamma}\right)$ ، ونقاط الانعطاف هي نقاط الانعطاف الانعط الانعطاف الانعطاف الانعط

$$(w)$$
هي نقاط انعطاف للاقتران ق $\left(\frac{\pi}{Y}\right)$ ، $\left(\frac{\pi}{Y}\right)$ هي نقاط انعطاف للاقتران ق

فرع جـ: قه(س)= ١١٥٥-س

الحل فه (س) متصل على مجاله

$$\frac{\frac{1}{r}}{r}(\omega - 0) \frac{1}{r} = (\omega)^{r}$$


$$\frac{\mathsf{Y}^{-}}{\mathsf{p}}(\mathsf{w}) = \frac{\mathsf{Y}^{-}}{\mathsf{p}}(\mathsf{o} - \mathsf{w})^{\frac{-\circ}{\mathsf{p}}} \stackrel{\mathsf{le}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{\overset{\mathsf{o}}}}{$$

 $] \infty$ ، ہ(w)
eq v ، ، \forall $v \in [\infty]$ ، $v \in [\infty]$ ، $v \in [\infty]$ ، $v \in [\infty]$ ، $v \in [\infty]$

كما يتضح من إشارة 0 / (m) في الشكل المجاور ،

فان ق $(m{w})$ مقعر لأعلى في الفترة $m{\circ}$ ه $m{\circ}$ وللاسفل في $m{\circ} = m{\circ}$

(٥،ق(٥)) نقطه انعطاف (متصل، ويغير الاقتران من اتجاه تقعره حولها)

السؤال الثالث: جد القيم القصوى المحلية لكل من الاقترانان الاتية ، وحدد نوع كل منها باستخدام اختبار المشتقة الثانية

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلى

اعداد

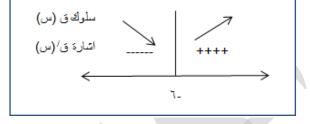
سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي (ان أمكن تطبيقها) ، وفي حالة عدم امكانية تطبيقها استخدم اختبار المشتقة الأولى :

فرع أ: ق (س)=س" + ٦س ١

متصل وقابل للاشتقاق لأنه كثير حدود
$$(m)$$

$$\bullet = 0$$
 ه $\bullet = 0$ ه $\bullet =$

$$\xi - = \omega$$
 $\epsilon \cdot = \omega \leftarrow \epsilon \cdot = (\xi + \omega)\omega^{*}$


$$\sim$$
 ۱۲ $=$ ۰ قیمة صغری محلیة \sim ۱۲ $=$ ۰ قیمة صغری محلیة

م احری علیة
$$\lambda \cdot = (\xi -)$$
 قیمة عظمی محلیة $\lambda \cdot = (\xi -)$

$|\mathfrak{d}(\mathfrak{d})| = |\mathfrak{d}(\mathfrak{d})|$ فرع ب

 $^-$ (٦-) $^-$ غير موجودة لأن $^-$ (٦-) $^+$ eq غير موجود الأن $^-$

بفشل الاختبار ولذا نلجأ إلى اختبار المشتقة الأولى.

السؤال الرابع: اذا كان الاقتران ${f v}(w)=1$ س $^1+$ س نقطة انعطاف عند w=-1 ، جد قيم $^1+$ قيمة الثابت أ

عند س--1 يوجد للمنحنى نقطة انعطاف o o (-1)=0 معطى"

$$\mathfrak{d} = \mathfrak{d} + \mathfrak{d} = \mathfrak{d} + \mathfrak{d} = $

السؤال الخامس: الشكل المجاور يمثل منحنى الاقتران $\sigma^{\prime}(m)$ ، اذا علمت أن $\sigma^{\prime}(n)=0$

أ. آلاء الجزار أ. بلال أبو غلوة اعداد أ. سليم السيقلي

الحل

،جد کلا مما یلی

- فترات التقعر ونقاط الانعطاف لمنحنى الاقتران ق (س)
 - ب) القيم القصوى المحلية للاقتران ق(س)
 - ج) فترات التزايد والتناقص لمنحنى الاقتران ق(س)

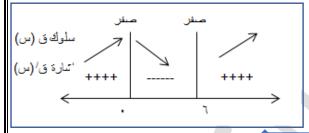
(س) سلوك ق (س) ++++++ اشارة ق// (س) خ

الحل <u>فرع أ:</u>

كما يتضح من إشارة فه ﴿ (س) في الشكل المجاور:

ق(س) مقعر للأعلى في الفترتين[٣،∞[

 $[m_{\infty}]$ ق (س) مقعر للأسفل في الفترة


∴ نقطة الانعطاف هي (٣ ، ق(٣))

الحل فرعب:

 \sim المي نقط حرجة \sim المي نقط حرجة \sim المي نقط حرجة \sim

نستخدم اختبار المشتقة الثانية

ه \sim (٦) قيمة صغرى محلية \sim (٦) محلية

فرع \leftarrow : کما یتضح من إشارة $\sqrt[6]{m}$ في الشكل المجاور یكون منحنی ق $\sqrt[6]{m}$:

متزایدا علی $[\,\cdot\,\,,\,\infty[\,\,\cdot\,\,]-\infty\,\,\cdot\,\,]$ ، و متناقصا علی $[\,\cdot\,\,,\,\,\infty]$

السؤال السادس : ق(س) اقتران كثير حدود من الدرجة الثالثة ، يمر منحناه بالنقطة (٥٤١) وله نقطة انعطاف عند v = v = v ، جد قاعدة الافتران ق(س) .

$$s+w$$
 + $^{\mathsf{T}}$ + $^{\mathsf{T}}$ + $^{\mathsf{T}}$

 $au=(au)^{\!\!\!/}$ توجد نقطة انعطاف عند au= au= au

لدينا ف(m)=1 + ب m^7++ ب m^7++ ومنها فر(m)=7 لدينا فر(m)=7

بالتعويض عن س= المشتقة الثانية : + ٢ب ، بالتعويض عن س

 $V=\omega+\omega$ معادلة المماس عند نقطة الانعطاف (۲، ق (Υ)) هي Υ

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

اعداد

```
سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي
```

$$m-=\frac{m-1}{1}=\frac{m-1}{2}=$$

$$extstyle extstyle ex$$

$$\Upsilon$$
 بطرح المعادلة σ من المعادلة τ بطرح المعادلة τ

حاب
$$= 1$$
 بطرح المعادلة $\mathbf{7}$ من المعادلة $\mathbf{7}$

: بالتعويض في المعادلة ١ عن قيم ١، ب ، ج ينتج
$$=-$$
 بالتعويض في المعادلة ١ عن قيم ١، ب ، ج ينتج

السؤال السابع : اذا كان للاقتران $v(m)=m^2-3$ س m+b(m) نقطة انعطاف أفقي هي m=1 ، وكان

$$(1)^{//}$$
 (2) (3) (3) (4)

$$(w)^{r} = (w)^{r}$$

$$3(m) = b^{7}(m)$$

$$(m) = 5b(m) b^{3}(m)$$

$$(1).....$$
 $((w))$ (w) (w) (w) (w) (w) (w) (w) (w)

$$(\Upsilon)$$
بالتعویض عن س = ۱ فی معادلة (۱) ینتج : ع (Υ) التحصیض عن س = ۱ فی معادلة (۱) ینتج : ع (Υ)

النقطة (۲۵۱) تقع على منحنى
$$\upsilon$$
 (س) = س 1 - 3 س 2 + ك (س)

النقطة
$$(۲٤١)$$
 نقطة انعطاف افقي لمنحنى ق (m) $ightarrow oldsymbol{v} = oldsymbol{\cdot}$ النقطة العطاف افقى المنحنى المنطقة العطاف العطاف المنطقة العطاف العطاف المنطقة العطاف المنطقة العطاف العطاف المنطقة العطاف العلاق العطاف العلاق العلاق العلاق العلاق العطاف العطاف العلاق العلا

$$ho = (1)$$
النقطة (761) نقطة انعطاف افقي لمنحنی ق (m) \Rightarrow (761) نقطة انعطاف افقی لمنحنی ق (m) \Rightarrow (1) \Rightarrow (1) \Rightarrow (1) \Rightarrow (1)

النقطة
$$(761)$$
 نقطة انعطاف لمنحنی ق $(m) \Longrightarrow 0$ $(n) = 1$ ، $(m) = 1$ اس $(n) = 1$ س $(m) = 1$

بالتعويض في معادلة ٢ عن قيم ك(١) و ك (١) و ك (١)

أ. آلاء البرعي

أ. آلاء الجزار

أ بلال أبو غلوة

أ. سليم السيقلي

اعداد

ヾ(()´┙)ヾ+()´゚┙ ())┙ヾ=()´゚ヒ

$$3^{\prime\prime}(1) = 7 \times 9 \times 7 + 1 \times 10^{17} = 7 \times 1 + 7 \times 37 = 10^{17}$$

السؤال الثامن: اذا كان ق (س) اقترانا متصلا في الفترة [- ٢٥٣] ويحقق الشروط الاتية:

$$\cdot > 0$$
 عندما س $\cdot < 0$ عندما $\cdot < 0$ عندما

عتمد على هذه المعلومات للإجابة عن الأسئلة التالية:

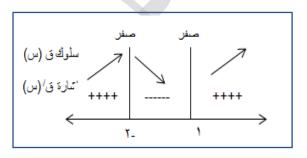
الحل

نقاط حرجة
$$((T-) \sim (T-) \sim ((1) \sim (1)) \sim ((1) \sim (1))$$
 نقاط حرجة

فرع أ : حسب اختبار المشتقة الثانية فإن

عندما
$$m>۰$$
 أي $1>۰$ فإن 9 $^{/}(m)>۰$ أي:

هم
$$(1)$$
 قیمة صغری محلیة (1) قیمة صغری محلیة


عندما
$$m < \cdot$$
 أي $-$ $< \cdot$ فإن 0 $/ (س) < \cdot$ أي:

فرع ب: نقطة انعطاف وهي (٠ ، ٠)

لأن (m) متصل ، وعندها يغير من مجال التقعر .

فرع جے: ق(m) متزاید فی الفترات $[1 \circ \infty[$ ، $]-\infty$ ، -7

ق(س) متناقص في الفترة [٢٠١]

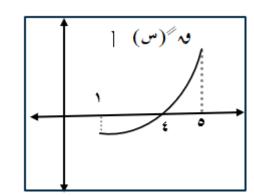
القسم الثالث: اسئلة اثرائية

التقعر ونقط الانعطاف

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
ب	إذا كان للاقتران ق(س) قيمة عظمى واحدة وكان ق (1) = صفر ، ق (1) = -7 ، ق يمر بالنقطة (1 ، -7) فإن تلك القيمة العظمى هي : (1) -7 $+$ -7 $+$ -7 $+$ -7 $+$ -7 $+$ -7 $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	•
٦	إذا كان للاقتران ق (س) = أ س المس نقطة انعطاف عندما س = _ ا فإن قيمة الثابت أ تساوي أ ب ا ح ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب	۲
7	اِذَا كَانَ قَ (س) متصلاً على [١ ، ٣] وكان ق (س) < صفر لجميع قيم س \in] ١ ، ٣ [، ق (س) له ثلاث نقاط حرجة فقط في [١ ، ٣] ، وكان ق (٢) = صفر فإن : أ) ق (٥،٢) > صفر ب) ق (٥،٢) > ق(٢) ج) ق (٥،٢) = ق(٢) د) ق (٥،٢) < ق (٢)	٣
ĵ	إذا كان لمنحنى الاقتران ق (س) = س + م س - 9 س نقطة انعطاف عند $ = -1 $ فإن قيمة الثابت م تساوي : $ = -1 $ فإن قيمة $ = -1 $ ب $ = -1 $ المنافق $ = -1 $ المنا	٤
٦	اِذَا كَانَ قَ (س) = ۱ س + جتاس معرفاً على [، ، π] فإن منحنى ق (س) يكون مقعراً للأسفل في أ) π ب) π ب) π ب) π ج) π ج) π ب) المسفل في أ) π ب) π ب) π ب) π ب) π ب) المسفل في أ) π ب) المسفل بن	٥
Ļ	ادا کان ق (س) = جتا 7 س معرفا علی $[$ ،، 7 $]$ فان قیمهٔ س التی یکون عندها نقط انعطاف س = $\frac{\pi}{1}$ ب $\frac{\pi}{2}$ ج $\frac{\pi}{7}$ $\frac{\pi}{7}$ د $\frac{\pi}{7}$ (أ	٦
Ļ	الشكل المجاور هو ق (س) تم نقطة الانعطاف لمنحنى ق (س) هى: أ) (١ ، ق(١)) ب) (٥، ق(٥)) ج) (٢ ، ق(٢)) د) لا يوجد له نقطة انعطاف د	٧

	سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي	
	اذا كان $\mathfrak{o}_{\kappa}(w)=w$ ، فان العبارة الصحيحة فيما يلي هي :	٨
Í	اً) (\cdot) فقطة انعطاف (\cdot) قيمة عظمي محلية (\cdot) فيمة عظمي محلية	
	 ج) ◊◊(٠) قيمة عظمي محلية د) ◊◊ (٠) غير موجودة 	
	اذا كانت النقطتان (\cdot) ، (\cdot) ، $(\frac{1}{7})$ ، هما نقطتا انعطاف لمنحنى ق (w) ، وكانت	٩
E	ه ﴿ س) = ٤س ٢ م ، فأن قيم الثابت ك هي :	
	۱)-۳ (۱) ۲ (۲) ۲ (۱)	
	الشكل المجاور يمثل منحنى قَ (س) على الفترة [٣٠٥] فان ق (س) يكون :	١.
	أ) مقعر للاسفل [٠،٠]	
Í	ب) مفعرا للأسفل [-٣، ٣]	
,	ج) متناقصا [۰،۰]	
	د) متناقصا [۳، ۰]	
	ادا كان ق(س) كثير حدود ، وكانت زاوية ميل المماس لمنحنى ق (س) عند أي نقطة عليه في الفترة] ٢ ،	11
	٥[هي زاوية منفرجة ، فان العبارة الصحيحة هي:	
د	أ) ق(س) متناقص في الفترة [۲ ، ۵]	
	ب) ق(س) متزايد في الفترة [۲ ، ٥] ج) ق(س) مقعر للأعلي في الفترة [۲ ، ٥]	
	ع) ق(س) مقعر للأسفل في الفترة [۲ ، ۰] د) ق(س) مقعر للأسفل في الفترة [۲ ، ۰]	
€	ادا كان ق(س) اقترانا متصلا على الفترة [١ ، ٣] ، قُ (س)حصفر ،	17
	$\forall \omega \in [1, \infty]$ ، π (٢) π صفر، فإن العبارة الصحيحة فيما يلى :	
	اً) ق(٢) صغرى محلية ب) (٢، ق(٢)) نقطة انعطاف	
	ج) ق(۲) عظمی محلیة د) ق(س) متزاید علی الفترة [۲،۳]	

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي الشكل المجاور يمثل منحنى $\mathfrak{o}(m)$ ، حيث $\mathfrak{o}(m)$ كثير حدود ، $\mathfrak{o}(m) = \mathfrak{o}(m)$


فأن العبارة الصحيحة:

أ) قر ٣) قيمة صغري محلية

ب) قه (س) مقعر للاعلى في [١٥٥]

ج) قه (س) مقعر للاعلى في [٤٥٥]

د) م اس متناقص في [٥،٤]

3

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
مقعر لأعلى على] ٠، ∞ [تا نائل ما	حدد فترات التقعر للأعلى وللأسفل للاقتران ق (س) = ٤س 7 7 2	1
مقعر لأسفل على [- ∞ ، 0[نقطة الانعطاف	ثم أوجد نقطة الانعطاف (إن وجدت).	
(۲ , ۰)		
$[rac{\pi}{\gamma}\;\cdot\cdot\;]$ مقعر لأسفل	جد مجالات التقعر للأعلى وللأسفل للاقتران ق (س) = ٣ جا س جتا س	۲
$[\pi \cdot rac{\pi}{\gamma}]$ ولأعلى	في [π ، ۰]	
[٣,٣_]	إذا كان ق(س) معرفاً على ح ، ق $(m) = \frac{m}{m^{7+9}}$ جد مجالات التقعر للأعلى للاقتران ق (m) .	٣
متزاید عندما س < _ ۲ ، س	للاقتران ق(س) = ٢س" ـ ٢٤ س ، س ∈ ح ، جد :	٤
متناقص [- ۲ ، ۲] مقعر لأعلى س > ٠ مقعر لأسفل س < ٠	 مجالات النزايد والتناقص والقيم القصوى مجالات التقعر للأعلى وللأسفل 	
ق مقعر للأعلى في] ـ ∞ ، ـ ٢] U	معتمداً على الشكل المجاور والذي يمثل منحنى الاقتران ق (س) جد: ١) مجالات التقعر للأعلى	٥
[۲ ، ∞ [ق مقعر للأسفل في	وللأسفل لمنحنى الاقتران ق (س) . ٢ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١ ١	
[- ۲ ، ۲] للاقتران نقاط انعطاف عندما س= ۲ ،س = _ ۲	+ • • • • • • • • • • • • • • • • • • •	

لعلمي	سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع ا	
۱) متزاید] \cdot ، ∞] متناقص] \cdot ∞ ، \cdot] ۲) للأعلی [\cdot ۱ ، ۱] للاسفل] \cdot ∞ ، \cdot ۱] \cup [\cdot \cdot \cdot \cdot] ۳) 0 0 0 0 0 0 0 0 0 0	إذا كان ق $\sqrt{m} = \frac{m}{m^{1+1}}$ جد : ١- مجالات التزايد والتناقص للاقتران ق (س) ٢- مجالات التقعر للأعلى وللاسفل للاقتران ق (س) ٣- الإحداثيات السينية لنقط الانعطاف .	٦
	الشكل المجاور يمثل جزءاً من منحنى الاقتران كثير الحدود ق(س) فإذا كان م (س) = ق(س) * ق (س) ، بين أن م (ج) > صفر	٧
۱) متزاید [- ۲ ، - ۱] U [۱ ، ۰] متزاید [- ۱ ، ۱] متناقص [- ۱ ، ۱] و المناقص [- ۱ ، ۱] المناقص [- ۱ ، ۱] المناقص ق (-۲) = ۰ ، ق (۱) = ۰ ، المناقص [- ۲ ، ۰] و المناقص [- ۲ ، ۰]	إذا كان ق (س) = (س + ۲)(س – ۱) ، معرفا على الفترة [– ۲، ٥] أوجد: ۱) مجالات التزايد والتناقص للاقتران ق (س) ۲) القيم القصوى المحلية للاقتران ق (س) ۳) مجالات التقعر للأعلى وللأسفل للاقتران ق (س)	٨
۱) متزاید [، ، $\frac{\pi}{\gamma}$ [۲) متزاید [، ، $\frac{\pi}{\gamma}$ [۲) عظمی ق(-۱) = ۷ ،ق (۲) = ۲ ، $\frac{\pi}{\gamma}$] ، $\frac{\pi}{\gamma}$] ، $\frac{\pi}{\gamma}$] ، $\frac{\pi}{\gamma}$ $\frac{\pi}{\gamma}$] $\frac{\pi}{\gamma}$ $\frac{\pi}{\gamma}$] $\frac{\pi}{\gamma}$ $\frac{\pi}{\gamma}$ $\frac{\pi}{\gamma}$]	ليكن ق $(m) = m - 1$ جتاس معرفاً على $[n] \cdot \frac{\pi}{r}$ فأوجد: (ا) مجالات التزايد والتناقص للاقتران ق (m) (ا) القيم العظمى والصغرى المحلية للاقتران ق (m) (ا) مجالات التقعر للأعلى وللأسفل للاقتران ق (m)	٩

170

۱)متناقص على [-۲،۰] وعلى [٣٤٢] ومتزايد على

[٢٤٠]

۲)ق(۲)= ۲ عظمی محلیه

ق(٠)= ، صغرى مطلقه ق(۲)=۸ عظمی محلیه

ق(۳)= ، صغری مطیه

") ق(س) مقعر للاعلى على [- ١٥٢] ومقعر

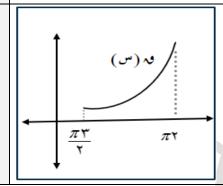
للاسفل على [261] $(\xi \zeta) = ((1) \otimes \zeta)(\xi$

اذا کان ق(w)= 7 w $^{7}-$ 7 w معرفا علی [- 7 w] ، أ،جد :

١)مجالات التزايد والتناقص للاقتران ق (س)

٢)القيم القصوى المحلية للاقتران ق (س)

٣) مجالات التقعر للاعلى و للاسفل للاقتران ق (س)


٤) نقطة الانعطاف للاقتران ق (س)

الشكل المقابل يمثل منحنى ق (س) في الفترة

اثبت ان الاقتران هـ π ۲۰ اثبت ان الاقتران هـ π ۲۰ اثبت ان الاقتران هـ ا

للاعلى في تلك الفترة علما بأن

ه ﴿ (س) = ق ﴿ (س) جتاس

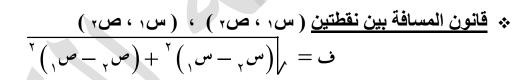
القسم الرابع: اسئلة تفوق

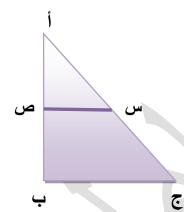
۳- ، ۱	اذا كانت س=۱ هي نقطة الانعطاف الافقي لمنحنى الاقتران $= 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 $	•
ق مقعر للاعلى على]-∞،۱[ق مقعر للاسفل على]۱،∞[اذا كان $ص = (m)$ اقتران معرف على $3 - \{1\}$ ، و n معرفتين على مجاله وكان منحنى الاقتران متزايد في هذا المجال وكانت $mm = m - m$ جد مجالات التقعر للاعلى وللاسفل لمنحنى الاقتران ق (m) .	۲
ق مقعر للاعلى على $\begin{bmatrix} \frac{7}{4} > \infty \\ \frac{7}{4} \end{bmatrix}$ ق مقعر للاسفل على $\begin{bmatrix} \frac{7}{4} < \infty \\ -1 \end{bmatrix}$ $\begin{bmatrix} \frac{5}{4} < \infty \\ \frac{7}{4} \end{bmatrix}$ $\begin{bmatrix} \frac{5}{4} < \frac{7}{4} \end{bmatrix}$	اذا كان لمنحنى الاقتران $ص=m^{7}-\frac{7}{m}m^{7}+1m$ (1 ثابت) نقطة انعطاف افقي ، فجد () مجالات التقعر للاعلى وللاسفل لمنحنى الاقتران ق(س). () قيمة الثابت 1 ? () احداثيات نقطة الانعطاف الافقي .	٣
	الشكل المجاور يمثل منحنى ق (w) في $\pi \sim \pi \sim \pi$ ، اثبت ان ه (w) مقعر للاعلى في تلك الفترة علما ه $\pi \sim \pi \sim \pi \sim \pi$ به تا $\pi \sim \pi \sim$	٤

الوحدة الثانية / تطبيعات التغاضل

الدرس الخامس تطبيقات عملية على القيم القصوى

القسم الأول: الملخص


ان من تطبيقات القيم القصوى ايجاد أكبر مساحة أو محيط أو حجم و بالعكس الأصغر حيث نستخدم اختبار المشتقة الثانية و في حال فشل اختبار المشتقة الثانية أو لصعوبة الاقتران نستخدم اختبار المشتقة الأولى.


ويجب على الطالب أن يكون على دراية بهذه القوانين .

المساحة	المحيط	الأبعاد	الشكل
القاعدة \times الارتفاع $+\frac{1}{7}$ \times حاصل ضرب أي ضلعين \times جيب الزاوية المحصورة	مجموع أطوال أضلاعه	-	(لْمِثْلِثُ
$=$ 5 $^{\prime}$ \times حاصل ضرب القطرين او $\frac{1}{7}$ \times حاصل ضرب	٧٤	ل: طول الضلع	المربع
الطول × العرض	۲ (س+ص)	س: الطول ص: العرض	المستطيل
\times (مجموع القاعدتين)× المساحة $\frac{1}{2}$ الارتفاع	مجموع أطوال أضلاعه	-	شبه المنحرف المتساوي الساقين
القاعدة \times الارتفاع $=$ ل Y \times جيب إحدى زواياه $=$ $\frac{1}{Y}$ \times حاصل ضرب القطرين	ئل	ل:طول الضلع ع: الارتفاع	المعين
πنق۲	۲نق	نق: نصف القطر	الدائرة

أ. آلاء الجزار

الحجم	المساحة	الأبعاد	الشكل
πنق۲ع	المساحة الجانبية= π ٢ نق ع المساحة الكلية = π نق ع + π ٢ نق ع	ع : الارتفاع نق : نصف القطر	الاسطوانة
π نق۳	π ٤نق٢	نق: نصف القطر	الكرة
∓ πنق `ع	المساحة الجانبية= π نق π الكلية = π نق π نق	ر: طول الراسم ع: الارتفاع نق: نصف القطر	المخروط القائم
س ص ع	٢ (س ص + ص ع + س ع)	س: الطول ص: العرض ع: الارتفاع	متوازي المستطيلات

$$\frac{2}{|\omega|} = \frac{2}{|\omega|} = \frac{2}{|\omega|}$$

" و سيجعل لهم الرحمن ودا "

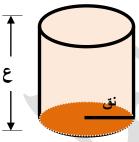
ما اقبل عبد بقلبه الى الله ، الا اقبل الله بقلوب المؤمنين اليه حتى يرزقه مودتهم وحبهم

القسم الثائي: حلول تمارين الكتاب

السؤال الأول يريد رجل عمل حديقة مستطيلة الشكل من أرضه ، وذلك بإحاطتها بسياج ، فاذا كان لديه ٨٠ مترا من الأسلاك ، فما مساحة أكبر حديقة يمكن للرجل إحاطتها ؟

الحل

طول السياج = محيط الحديقة =
$$\Lambda$$
 متر بفرض طول المستطيل = M ، عرض المستطيل = M يكون محيط المستطيل = M M M


م= س
$$\times$$
ص = س \times (\bullet \bullet) = \bullet \bullet \bullet \bullet ، بالاشتقاق بالنسبة ل س

$$\frac{7}{2m} = \cdot \cdot \cdot - \cdot = 0$$
 ہوضع $\frac{7}{2m} = \cdot \cdot \cdot - \cdot = 0$ ہے۔ $\frac{7}{2m} = \cdot \cdot = 0$ ہاستخدام اختبار المشتقة الثانية :

) کی در المساحة اکبر ما یمکن .
$$\cdot > 7 = -7$$
 عند س $= 7$ قیمة عظمی محلیة ، وعندها تکون المساحة اکبر ما یمکن .

مساحة القطعة = م =
$$\star$$
 عس $-$ س \star = \star خ \star در مربع ...

السؤال الثاني: مقلمة على شكل أسطوانة دائرية قائمة مفتوحة من أعلى سعتها π ١٩٢ سم فاذا علمت أن سعر كل اسم من البلاستيك المستخدم لصنع القاعدة ، يعادل ثلاثة أمثال سعر ١ سم من البلاستيك المستخدم في صناعة الجوانب ، جد أبعاد المقلمة ذات الأقل تكلفة .

الاسطوانة

الحل

$$\frac{197}{^{7}} = \frac{\pi 197}{^{7}} = \mathcal{E} \leftarrow \mathcal{E}\pi^{^{7}}$$

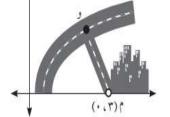
$$= \pi 197 \leftarrow \mathcal{E}$$

$$^{"}$$
نه π ا π = π ا π انه خ

باستخدام اختبار المشتقة الأولى ومن ملاحظة اشارة ك (س):-

ع =
$$\frac{197}{77} = \frac{197}{77} = 1$$
 سم \rightarrow أبعاد المقلمة ذات الاقل تكلفة (نق = ٤ سم ، ع = ١٢ سم)

السؤال الثالث: طريق منحنى معادلته في المستوى الديكارتي هي ص $= \mathbf{\tilde{g}}(\mathbf{w}) = \sqrt{1 - 1}$ ، النقطة م (\mathbf{v}, \mathbf{v}) تمثل موقع مستشفى ، يراد شق شارع فرعي مستقيم من النقطة (و) الى موقع المستشفى (م) ، عين احداثيات النقطة (و) ليكون طول الشارع (وم) أقل ما يمكن.

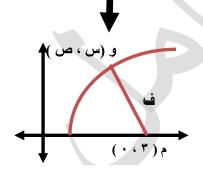

(انظر الشكل المجاور)

طول و
$$\gamma = \sqrt{\left(m_{\gamma}-m_{\gamma}\right)^{+}+\left(m_{\gamma}-m_{\gamma}\right)^{-}}$$
 قانون المسافة بين نقطتين

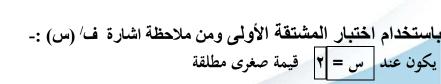
$$\overline{}(w-w) + \overline{}(w-w) + \overline{}(w-w)$$

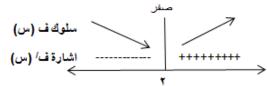
$$\langle 1 \rangle \dots \langle 1 \rangle = \sqrt{|\omega|^{2} + 9 + \omega|^{2}}$$

$$1$$
لکن $0=\sqrt{|Y|} = \sqrt{|Y|} = \sqrt{|Y|}$ بالتعویض بقیمة $|Y| = \sqrt{|Y|}$ لکن $|Y| = \sqrt{|Y|}$



بالاشتقاق بالنسبة ل س:


$$\sqrt{\Lambda + m^{2} + 1}$$
 $\Rightarrow \omega = \sqrt{m^{2} + 2m + 1}$ $\Rightarrow \omega = \sqrt{m^{2} + 2m + 1}$


$$\frac{2 - m\gamma}{\sqrt{1 + m^2 + \gamma_m}} = \frac{2 \dot{\omega}}{\sqrt{1 + m^2 + \gamma_m}} = \frac{2 \dot{\omega}}{\sqrt{1 + m^2 + \gamma_m}}$$

$$\boxed{\Upsilon = \omega} \iff \cdot = \xi - \omega \Upsilon \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \Upsilon}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1 + \omega \chi}} \iff \cdot = \frac{\xi - \omega \chi}{\sqrt{1$$

$$\boxed{Y = w} \leftarrow \cdot = \xi - wY \leftarrow \cdot = \frac{\xi - wY}{\sqrt{1 + w\xi + Y}} \leftarrow \cdot = \frac{\xi - wY}{\sqrt{1 + w\xi + Y}} \leftarrow \cdot = \frac{\xi - wY}{\sqrt{1 + w\xi + Y}} \leftarrow \frac{\xi - wY}{$$

$$\nabla V = \sqrt{1 - V \times V} = \sqrt{1 - \omega V} = \omega$$

فتکون احداثیات و هی (۲، ۱۳√۳)

السؤال الرابع: جسم يسير في خط مستقيم بحيث أن أبعاده ف بالأمتار بعد ن ثانية يعطى بالعلاقة

 $\omega = |\pi| \frac{\pi}{2} + \nu + |\pi| \frac{\pi}{2}$ فاذا كانت السرعة المتوسطة للجسم في الفترة الزمنية $\omega = |\pi| + |\pi|$ هي ١٠ م / ث

وكانت سرعة الجسم أقل ما يمكن عند ن = ١ ث. احسب الثابتين أ ، ب.

$$\left(\sqrt{\frac{\pi}{\xi}}\right)$$
اخل ف $=$ اجتا $\left(\sqrt{\frac{\pi}{\xi}}\right)$ بجا

$$1 \cdot = \frac{(\cdot) - (\cdot) - (\cdot)}{\sim 1} = 1$$
السرعة المتوسطة = $\frac{\dot{\upsilon}}{\sim 1}$

$$\mathbf{1} \cdot = \frac{(\mathbf{1} + \mathbf{1} \times \mathbf{1}) - (\mathbf{1} \times \mathbf{1} + \mathbf{1} \times \mathbf{1})}{\mathbf{1}} = \frac{\left(\left(\frac{\pi}{\mathbf{1}}\right) + \mathbf{1} \times \mathbf{1}\right) - \left(\left(\frac{\pi}{\mathbf{1}}\right) + \mathbf{1} \times \mathbf{1}\right) - \left(\left(\frac{\pi}{\mathbf{1}}\right) + \mathbf{1} \times \mathbf{1}\right)}{\mathbf{1}} = \frac{\left(\mathbf{1} \times \mathbf{1} \times \mathbf{1}\right) - \left(\mathbf{1} \times \mathbf{1} \times \mathbf{1}\right) - \left(\mathbf{1} \times \mathbf{1} \times \mathbf{1}\right)}{\mathbf{1}} = \mathbf{1}$$

(1) = 1+1 = 1-1

بما أن سرعة الجسم أقل ما يمكن عندن = ١ ث ، تكون ٤ (١) = ، لذا نجد مشتقة السرعة كالتالي

$$\left(\sqrt{\frac{\pi}{\xi}}\right)$$
 اجا $\left(\sqrt{\frac{\pi}{\xi}}\right)$ بجتا $\left(\sqrt{\frac{\pi}{\xi}}\right)$ بجتا $\left(\sqrt{\frac{\pi}{\xi}}\right)$ بجتا $\left(\sqrt{\frac{\pi}{\xi}}\right)$ ب

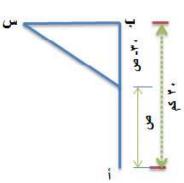
$$\left(\sqrt{\frac{\pi}{\xi}}\right)$$
اجتا $\left(\sqrt{\frac{\pi}{\xi}}\right)$ اجتا $\left(\sqrt$

من معلومية أن ع / (١)=٠

: بضرب الطرفين في
$$\frac{{}^{\prime}\pi-}{17}$$
 اجتا $\frac{{}^{\prime}\pi-}{17}$ بجا $\frac{{}^{\prime}\pi-}{17}$ بضرب الطرفين في $\frac{{}^{\prime}\pi-}{17}$ ثم التعويض عن قيمة النسب المثلثية ينتج $\frac{{}^{\prime}\pi-}{17}$

بالتعويض في (١) عن قيمة أ :
$$- \cdot = \cdot + \cdot + \cdot + \cdot + \cdot + \cdot + \Rightarrow \boxed{\cdot = \cdot \cdot \cdot}$$
 ومنها $\boxed{1 = - \cdot \cdot \cdot}$

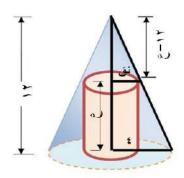
لسؤال الخامس: في الساعة الثانية عشرة ظهرا كانت الباخرة (ب) على بعد ٣٠ كم شمال الباخرة أ وتسير غربا بسرعة ١٠ كم / الساعة ، فاذا كانت أ تسير شمالا بسرعة ٢٠ كم في الساعة ، فمتى تكون المسافة بين الباخرتين أقل ما يمكن ؟


المسافة التي تسيرها الباخرة "ب" = س = ۱۰ ن
$$ص = 10$$
 ، " المسافة = السرعة × الزمن" المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω ω > ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω المسافة التي تسيرها الباخرة "أ." = ω = ۲۰ ن ω = ω المسافة الباخرة "أ." = ω = ω المسافة التي تسيرها الباخرة "أ." = ω = ω = ۲۰ ن ω المسافة الباخرة "أ." = ω = ω = ω المسافة الباخرة "أ." = ω = ω = ω = ω المسافة الباخرة "أ." = ω =

من نظرية فيثاغورس:

$$\overset{7}{\omega}\overset{7}{\omega}=\overset{7}{\omega}\overset{7}{\omega}+(\overset{7}{\omega}-\overset{7}{\omega})\overset{7}{\omega}$$
 $\overset{7}{\omega}\overset{7}{\omega}\overset{7}{\omega}=(\overset{7}{\omega})\overset{7}{\omega}$

$$\omega$$
 ۱, $\tau = \frac{1}{1} \frac{7}{1} \cdot \cdot \cdot = 0 \iff \cdot = 1$ د $\cdot = \frac{1}{1} \cdot \cdot \cdot = 0$


باستخدام اختبار المشتقة الأولى،

السؤال السادس: جد حجم أكبر أسطوانة دائرية قائمة يمكن وضعها داخل مخروط دائري قائم ارتفاعه ١٢ سم ونصف

قطر قاعدته ٤ سم.

الحل

جحم الاسطوانة = ع
$$=$$
 نوم π^{7} ، من تشابه المثلثات نحصل على :
$$\frac{7}{1} = \frac{6}{2} \Rightarrow \frac{7}{7} = \frac{6}{2} \Rightarrow \frac{7}{7} = \frac{6}{1} \Rightarrow \frac{7}{7} = \frac{6}{1} \Rightarrow \frac{7}{7} = \frac{7}{1} \Rightarrow \frac{7}{1} \Rightarrow \frac{7}{7} = \frac{7}{1} \Rightarrow \frac{7}{7} $

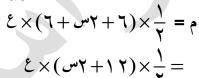
بالتعویض عن قیمة ع فی ح : ع π نو π (۲ ۱ – π نو π)

بالاشتقاق بالنسبة ل نق $= 2 - \pi$ نو π بالاشتقاق بالنسبة ل نق

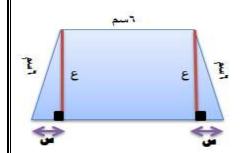
$$\cdot = ($$
 بوضع $= \cdot =$ $$= \pi$ $= $

بحل المعادلة:

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي باستخدام اختبار المشتقة الثانية :


$$\sqrt{\pi}$$
۱ ۸ – π ۲ ٤ = $\sqrt{2}$

$$ho > \pi \Upsilon \xi - = \frac{\Lambda}{\Upsilon} \times \pi \Upsilon \Lambda - \pi \Upsilon \xi = \left(\frac{\Lambda}{\Upsilon}\right) / \xi$$


اذن عند
$$\frac{\Lambda}{\psi}$$
 قيمة عظمى (وعندها يكون حجم الاسطوانة أكبر ما يمكن) بالتعويض في (١) :

السؤال السابع: شبه منحرف فيه ٣ أضلاع متساوية في الطول وطول كل منها ٦ سم ، جد أكبر مساحة ممكنة لشبه

مساحة شبه المنحرف (م)= نصف مجموع القاعدتين × الارتفاع

$$\left[\mathcal{E} \times (\omega + 7) \right] =$$

بالتعویض عن "ع " في "م
$$\times \sqrt{ -77 - m^7 }$$
 ، بالاشتقاق بالنسبة ل س :

$$\frac{7}{\sqrt{m-m}} \times \frac{\sqrt{m-m}}{\sqrt{m-m}} \times \sqrt{m+7} = \sqrt{m+7}$$

$$\frac{7}{\sqrt{m-m}} \times \frac{\sqrt{m-m}}{\sqrt{m-m}} = \sqrt{m+7}$$

$$=\frac{\frac{7}{2}\omega - \frac{1}{2} + \frac{7}{2}\omega - \frac{1}{2} + \frac{7}{2}\omega - \frac{1}{2}}{\frac{7}{2}\omega - \frac{1}{2}} =$$

$$\cdot = \Upsilon + \mathcal{V} $

$$\cdot = (7 + \omega)(\Upsilon - \omega) \Leftarrow \cdot = 1 \wedge - \omega + (\Upsilon - \omega) \Leftrightarrow $

اما
$$(m-T)= \cdot \longrightarrow \boxed{m=T}$$
 أو $(m+T)= \cdot \longrightarrow \boxed{m=-T}$ " مرفوض"

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي باستخدام اختبار المشتقة الأولى ، ومن ملاحظة إشارة σ (س) في الشكل المجاور :

يكون عند س=٣ قيمة عظمي ، ومنها :

مساحة شبه المنحرف (م) =
$$(7+m)\times \sqrt{77-m^7}$$

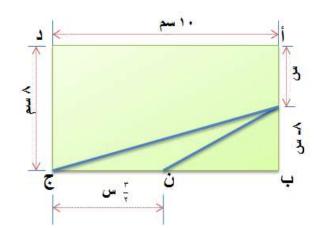
$$\overline{\Psi}$$
 مسم مربع $\overline{\Psi}$ $\overline{\Psi}$

السؤال الثامن: أ ب ج د مستطيل عرضه أ $\mu = \lambda$ سم وطوله $\mu = \lambda$ سم ، م نقطة على الضلع أ μ بحيث أ م μ سم، ن نقطة على الضلع ب ج بحيث ن ج $\frac{7}{7}$ س سم، جد قيمة س بحيث تكون مساحة المثلث م ن ج أكبر ما يمكن.

الحل

المعطیات :
$$| \psi = \lambda |$$
 ، $| \psi = \lambda |$ ، $| \psi = \lambda |$ مساحة المثلث م ن جـ (م) = نصف القاعدة ×الارتفاع $| \psi = \lambda |$ $| \psi = \lambda |$

$$(\omega - \lambda) \times \omega \frac{\gamma}{\gamma} \times \frac{1}{\gamma} = \gamma \omega \times \frac{\gamma}{\gamma} = \gamma \omega \times \frac{\gamma}{\xi} = \gamma \omega \times \frac{\gamma}{\xi$$


، بالاشتقاق ینتج
$$\gamma = 7 - \frac{\gamma}{\gamma}$$
س

$$\cdot = \omega \frac{\pi}{Y} - 7 \Leftarrow \cdot = 7$$

$$mT = 17 \iff m \implies 7 = 7$$
 بوضع $m = 17 \iff m \implies 7$

$$hicksim$$
باستخدام اختبار المشتقة الثانية : $\gamma = \frac{m-1}{7} + \gamma^{-1}(3) = \frac{m-1}{7} < 0$

اذن عند
$$w = \frac{1}{2}$$
 قیمة عظمی ، اذن عند $w = \frac{1}{2}$ تکون مساحة المثلث م $v = \frac{1}{2}$ ما یمکن

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي القسم الثالث : اسئلة اثرائية

أسئلة تطبيقات عملية على القيم القصوى

الجواب	أجب عن الأسئلة الاتية	#
7	أوجد مساحة أكبر مستطيل يمكن رسمه داخل دائرة نصف قطرها ١٠ سم	•
ኣ‹ኣ ‹ኣ	مثلث متساوي الساقين محيطه ١٨ سم ، أوجد أطوال أضلاعه عندما تكون مساحته أكبر ما يمكن	۲
₹£1/	جد أقصر مسافة بين النقطة (٠ ، ٦) ومنحنى الاقتران س ٢ = ١٦	٣
£ , £ , £	سلك طوله ١٢ سم ثني ليكون مثلثاً متساوي الساقين ، أوجد أطوال أضلاع هذا المثلث لتكون مساحته أكبر ما يمكن	ŧ
1.1	أوجد أقصر مسافة بين النقطة (۲ ، ۰) ومنحنى العلاقة ص $^{\prime}$ $_{-}$ س $^{\prime}$ $_{-}$ $^{\prime}$	٥
۳۸۷۲ م۲	أرض مستطيلة الشكل رؤوسها أ ، ب، ج، د تتكون من حديقة مستطيلة الشكل مساحتها ٣٢٠٠ متر مربع محاطة بأرصفة عرض كل من الرصفين أب ، ج د يساوي ٤ متر ، وعرض كل من الرصفين على الضلعين الاخرين ٢ متر ، أوجد أقل مساحة ممكنة لقطعة الأرض	14
7 / ۲۷	شبه منحرف فيه ٣ أضلاع متساوية في الطول وطول كل منها ٦ سم ، جد أكبر مساحة ممكنة لشبه المنحرف	٧
۱۸ سم۲	أ ب جـ مثلث قائم الزاوية في ب ، ومتساوي الساقين ، وطول أ جـ = ٢ سم ما مساحة أكبر مستطيل يمكن رسمه داخل المثلث بحيث ينطبق أحد أضلاعه على الوتر أ جـ ، ويقع الرأسان الاخران على ضلعي القائمة ؟	٨

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
<u>٤</u> ٥	أوجد مساحة أكبر مستطيل بحيث يقع رأسان من رؤوسه على محور السينات الموجب ويقع الرأسان الآخران على المستقيمين $\omega=3$	`
$\frac{\overline{\forall r} \pi^{\gamma}}{r} = \mathbf{a}$	قطاع دائري زاويته المركزية هر ونصف قطر دائرته ٣ سم حُوَّل إلى مخروط دائري قائم، جد قيمة ه التي تجعل حجم المخروط أكبر ما يمكن	۲
نق = ٥ سم	قطاع دائري محيطه (٢٠ سم) ، جد نصف قطر دائرته بحيث تكون مساحة القطاع أكبر ما يمكن	٣
۸ سم	اب ج مثلث فیه ب ج $= 11$ سم ، الارتفاع أم $= 17$ سم ، هو $= 7$ سم ، هو المثلث أكبر ما يمكن جد طول العمود النازل من د على هو الذي يجعل مساحة المثلث أكبر ما يمكن	٤

گراساة الكاما،

الوحدة الثانية / تطبيعات التغاضل

تمارين عامة

السؤال الأول: ضع دائرة حول رمز الإجابة الصحيحة لكل فقرة من الفقرات (١-١٤):

٧	٦	٥	ŧ	٣	۲	١	الفقرة
Í	÷	د	٦	ب	ب	÷	الاجابة
١ ٤	١٣	١٢	11	١.	٩	٨	الفقرة
Ļ	٦	÷	7	٥	Í	7	الاجابة

حلول السؤال الأول:

۱. اذا کان
$$v(m) = \begin{cases} w \\ -w \end{cases}$$
 ، فما مجموع قیم س التي یکون عندها للاقتران ق $v(m) = \frac{1}{2}$ ، فما مجموع قیم س التي یکون عندها للاقتران ق $v(m) = \frac{1}{2}$

نقطة حرجة في الفترة [٣٠٠] ؟

$$]$$
۱، $\cdot [\Rightarrow \frac{1}{7} = \omega \iff \cdot = 1 - \omega$ بوضع 0 (ω)

 $\left(\left(\frac{1}{7}\right)$ ، $\left((7)\right)$ ، $\left((7)\right)$ ، $\left((7)\right)$ ، $\left((7)\right)$

۲. لیکن $v(w)=\sqrt{2-w^{\gamma}}$ ، $w\in [-7,7]$ ، فما قیمة w التي یکون للاقتران ق(w) عندها قیمة عظمی

غ.م سلوك ق (س)

عند س = ، قيمة عظمى مطلقة اذن عند ق(١) هي اكبر قيمة للاقتران

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

اعداد

مطلقة ؟

۳. اذا کان
$$0$$
 $(m) = (m^{\gamma}-1)^{\gamma}(m-1)^{2}$

فما الفترة التي يكون فيها ق(س) متناقصا ؟

$$(\mathsf{V}-\mathsf{V})^{\mathsf{T}}(\mathsf{V}-\mathsf{V}$$

$$\mathbf{v} = {}^{\mathsf{t}}(\mathbf{Y} - \mathbf{w})^{\mathsf{T}}(\mathbf{v} - \mathbf{v}) \leftarrow \mathbf{v} = (\mathbf{w})^{\mathsf{T}}\mathbf{v}$$

$$(m)=$$
 m معرفا فی الفترة $(m)=m$ ، اذا کان m

فما القيمة الصغرى المطلقة للاقتران ق(س)

$$\mathcal{U}(w) = w^{-1} - \mathcal{V}w \longrightarrow \mathcal{U}(w) = \mathcal{V}w \longrightarrow \mathcal{V}(w)$$

$$\boxed{1 \pm 1} \leftarrow 1 = 100 \leftarrow 1 = 100 \leftarrow 100$$

الحل

$$\left\{ -1 \circ -1 \circ \right\}$$
قيم س الحرجة هي

$$1 \lambda - = (\Upsilon -) \upsilon$$

$$\upsilon (-1) = -1$$
ن $\upsilon (-1) = -1$ قیمهٔ صغری مطلقهٔ $\upsilon (-1) = -1$ نام مطلقهٔ $\upsilon (-1) = -1$

٥. اذا كان ق(س) كثير حدود وكان $\mathfrak{O}^{(m)} > 0$ عندما $\mathfrak{O}^{(m)} > 0$ عندما $\mathfrak{O}^{(m)} > 0$ وكان $\mathfrak{O}^{(m)} = 0$ فما العبارة الصحيحة دائما من العبارات الاتية ؟

 $\omega = \cdot = \cdot = 0$ نقطة حرجة $\omega = 0$

سلوك ق (س)

+++++ اشارة ق (س)

د

سلوك ق (س اشارة ق/(س

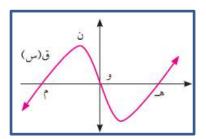
أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

اعداد


الحل

٦. ما مجموع جميع قيم ج التي يمكن الحصول عليها من تطبيق نظرية رول على الاقتران $\mathfrak{T}(m) = \Lambda$ في الفترة [١٠٠] ؟

 υ على ح ، υ قابل للاشتقاق على ح ، υ (س) قابل للاشتقاق على ح

الحل

ج

۷. بالاعتماد على الشكل المجاور ، الذي يمثل منحنى v(m) . حدد النقط التى يكون عندها v(m) ، v(m) موجبتين :

الحل ن،ل نقاط حرجة (قمة وقاع)

بملاحظة اشارة ل (س) في الشكل المجاور:

فأن ٠٠ (س) عند س=ه ، س=م و نقطة حرجة

بملاحظة اشارة υ υ في الشكل المجاور: فأن υ υ عند υ عند υ

٨. اذا كان $\mathfrak{O}(m)$ اقترانا متصلا على [0,1] وكان $\mathfrak{O}^{-1}(m) < 0$ لجميع قيم $\mathfrak{m} \in [0,1]$ وكان $\mathfrak{O}(m)$ له ثلاث نقاط حرجة فقط في [0,1] ، وكان $\mathfrak{O}(m) = 0$ ، فما العبارة الصحيحة مما يأتي ؟

الحل بما أن ق $\sim (m) < 0$ وله ~ 1 نقاط حرجة هي عند س ~ 1 ، س ~ 1 (أطراف الفترة)،

 $\cdot > (\Upsilon)^{//}$ عند س=۲ (نقطة حرجة)لأن $\circ \wedge (\Upsilon) = \cdot \Rightarrow \circ \wedge (\Upsilon) = \cdot$

 \leftarrow عند س = ۲ قیمة عظمی محلیة (أي ان اشارة الاقتران $\sqrt{\Upsilon}$) = ۰ تتغیر من موجب الی سالب عند س=۲)

 $rac{0}{7}$ تقع بعد ۲ وحسب تعریف التناقص $rac{0}{7}$

 (Υ) $\sim > (\frac{\circ}{\Upsilon})$ $\sim ($

د

_

-9 ما قيمة الثابت م التي تجعل لمنحنى الاقتران $\sigma(m) = m^{-1} - m^{-1}$ هـ ما قيمة الثابت م التي تجعل لمنحنى الاقتران $\sigma(m) = m^{-1}$

$$(7 + m^{2} - m^{2} + m^{2} - m^{2} + $

(-۱۰،۱-) نقطة انعطاف

Í

$$| \mathbf{T} = \mathbf{C} | \leftarrow \mathbf{C} = \mathbf{C} + \mathbf{C} + \mathbf{C} = \mathbf{C} + \mathbf{C} = \mathbf{C} + \mathbf{C} = \mathbf{C} = \mathbf{C} + \mathbf{C} = \mathbf{$$

۱۰ ما قيمة = التي تحددها نظرية القيمة المتوسطة على الاقتران $\sigma(m)=m^{2}+m-7$ في [-17] ؟

الحل

٠٠٠ يحقق شروط نظرية القيمة المتوسطة

$$\frac{(1-)\upsilon-(7)\upsilon}{7} = (\cancel{\Rightarrow})^2 \upsilon \Leftarrow$$

$$\frac{7--\cdot}{7} = 1+\cancel{\Rightarrow}7 \Leftarrow$$

$$\frac{1}{7} = \cancel{\Rightarrow} = 1+\cancel{\Rightarrow}7 \Leftarrow$$

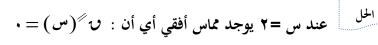
ج

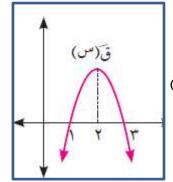
ا ا. اذا كان v(m) = w |w| فما العبارة الصحيحة فيما يأتي ؟

$$|\omega| = |\omega| = |\omega| = |\omega|$$

$$|\omega| = |\omega| = |\omega|$$

$$egin{aligned} egin{aligned} egin{aligned} & egin{a$$


$$\mathbf{v} = (\mathbf{v})^{\mathbf{v}} \mathbf{v} \leftarrow \mathbf{v} = \mathbf{v}^{\mathbf{v}} (\mathbf{v})^{\mathbf{v}} \mathbf{v} \mathbf{v} = \mathbf{v}^{\mathbf{v}} (\mathbf{v})^{\mathbf{v}} \mathbf{v}$$


∴ لا يوجد قيم قصوى

نقطة انعطاف لأن ق متصل عندها ويغير مجال التقعر حولها $(\cdot\,\cdot\,)$

د

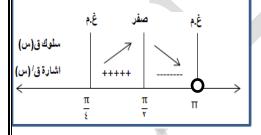
۱۲. الشكل المجاور يمثل منحنى v'(m) ، ما مجموعة حل المتباينة v''(m) > 0 ؟

من خلال المماس : $*\bar{b}(m)$ متزايد في الفترة $]-\infty$ > Υ (والمماس عندها يصنع زاوية حادة) ومنها $0^{\infty}(m)>0$ في الفترة $]-\infty$ > Υ

$$*ar{ar{arphi}}(m)$$
 متناقص في الفترة $[-\infty \circ Y]$ والمماس عندها يصنع زاوية منفرجة $*$

$$]\infty$$
 ، کا الفترة $[au]$ ومنها $[au]$

١٣. اذا كان $\mathfrak{o}(m)$ كثير حدود من الدرجة الثالثة ، ما أكبر عدد ممكن من النقط الحرجة يمكن أن نحصل عليها للاقتران $\mathfrak{o}(m)$ $\mathfrak{o}(m)$


الحل ق(س) كثير حدود من الدرجة الثالثة $\to v$ (س) كثير حدود من الدرجة الثانية

 \longrightarrow أكبر عدد من النقاط الحرجة من 0 (m) هو ٢ بالإضافة الى طرفي الفترة ٢ ، فيكون أكبر عدد ممكن من النقاط الحرجة للاقتران ق(m) هو ٤

 π ن ناذا کان $\pi(m)$ اذا کان $\pi(m)$ اذا کان $\pi(m)$ اندا کان نازستان ساز ایدا $\pi(m)$ اندا کان نازستان ساز ایدا ا

ۍ (س) = لــو_ه جاس، ق(س) متصل على مجاله ،

$$\frac{\pi}{\omega} = (\omega)$$

$$\left[\pi \cdot \frac{\pi}{\xi}\right]$$
 $\Rightarrow \frac{\pi}{Y} = \omega \iff \cdot = \omega$ بوضع $\omega \cdot (\omega)$

من ملاحظة إشارة v(m)في الشكل المجاور:

$$\left[\frac{\pi}{7}, \frac{\pi}{2}\right]$$
 يكون منحنى ق (m) متزايد في الفترة

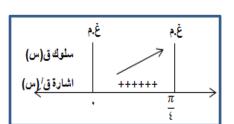
ب

الحل

 $\frac{|1 + 1 + 1|}{|1 + 1|}$ ، اثبت أن $\sigma(w) = -1$ بناس، π بناس، π بنات أن π أثبت أن π متزايد في مجاله و من ذلك أثبت أن جاس π أن جاس بنات الفترة .

$$\left[\frac{\pi}{\xi}, \cdot\right]$$
 هه (m) قابل للاشتقاق في $\left[\frac{\pi}{\xi}, \cdot\right]$ هه (m) قابل للاشتقاق في $\left[\frac{\pi}{\xi}, \cdot\right]$ هه (m) هه (m) هه (m) هم (m) هم (m)

بوضع قه ′(س)=٠ ← جتاس-جاس =٠ ← جتاس =جاس


ومن ملاحظة إشارة وم (س) من الشكل المجاور

$$\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 یکون (m) متزاید علی

 $1 \le m$ لإثبات أن جاm+جتاس

$$\left[rac{\pi}{\xi} \cdot \cdot \right] \ni \omega orall \ \ (\cdot) \otimes \leq (\omega) \otimes (\omega)$$

$$\left[\frac{\pi}{\xi}, \cdot\right] \ni \omega$$
 د $\left[\frac{\pi}{\xi}, \cdot\right] \ni \omega$ د $\left[\frac{\pi}{\xi}, \cdot\right] \mapsto \omega$ جاس جیا $\left[\frac{\pi}{\xi}, \cdot\right] \mapsto \omega$ د استان کیا در استان

 $\frac{1+\frac{m}{m+1}}{\frac{m+1}{m}}$ جد فترات التزايد والتناقص والقيم القصوى المحلية للاقتران $\sigma(m)=rac{m+1}{m}$

$$e \wedge (m)$$
 متصل $\forall m \in S$

الحل

 $v \in \mathcal{S}$ قابل للاشتقاق $\forall w \in \mathcal{S}$

$$\cdot = (1 - \omega)(\Upsilon + \omega) \quad \Leftarrow \quad \cdot = \Upsilon - \omega \Upsilon + \Upsilon \omega \quad \Leftarrow \quad \cdot = \Upsilon + \omega \Upsilon - \Upsilon \omega - \quad \Leftarrow \quad \cdot = (\omega) \Upsilon \omega$$
 بوضع قد (ω)

$$1 = \omega$$
 $\omega = -\infty$

من ملاحظة إشارة قه ﴿ (س) من الشكل المجاور:

$$] \infty$$
 و متناقص على $] - \infty$ $-$

$$\mathfrak{G}(-\mathsf{T}) = \frac{\mathsf{T} - \mathsf{T}}{\mathsf{T}} = \frac{\mathsf{T} - \mathsf{T}}{\mathsf{T}}$$
قیمة صغری محلیة

قیمة عظمی محلیة
$$\frac{1}{7} = \frac{7}{5} = (1)$$

السؤال الرابع : اذا كان $v(m)=m^{-m}-m$ يحقق شرط نظرية رول على [-16] جد قيمة / قيم الثابت أ

$$u(-1) = u(1) \Rightarrow -1 + T - l = l - T - l = l$$
 $u(-1) = u(1) \Rightarrow -1 + T - l = l$
 $u(-1) = u(1) \Rightarrow -1 + l$
 $u(-1) = u(1)$

السؤال الخامس : اذا كان $v(m) = m^m - mm^m - pm + 0$ معرفا في الفترة [-767] جد : أ) القيم القصوى المطلقة للاقتران v(m) .

فه(س) متصل على مجاله لأنه كثير حدود .

فه (س) قابل للاشتقاق في الفترة]- ٢، ٦[

الحل

 $\{7 < 7 < 7 < 7\}$ مجموعة قيم س التي يكون عندها قيم حرجة هي

$$\circ 9 = (7) \circ (77) \circ (7$$

أكبر قيمة للاقتران هي $v(7) = 9 \circ \rightarrow v(7) = 9$ هي قيمة عظمي مطلقة

أصغر قيمة للاقتران هي $\mathfrak{o}_{\kappa}(\mathfrak{m}) = -7$ $\mathfrak{o}_{\kappa}(\mathfrak{m}) = -7$ هي قيمة صغرى مطلقة

ب) فترات التقعر للأعلى والأسفل لمنحنى الاقتران 0 (س)

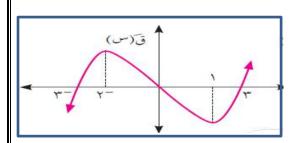

 ${\mathfrak C}^{(m)}$ نقط الانعطاف ، وزوایا الانعطاف لمنحنی الاقتران ${\mathfrak C}^{(m)}$

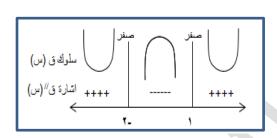
(۱، مه (۱)) = (1 - 1) هي نقطة انعطاف لأن م(m) متصل ، وعندها يغير من اتجاه التقعر .

- (۱، قه(۱)) = (۱، -لايجاد زاوية الانعطاف :

السؤال السادس : معتمدا على الشكل المجاور ، الذي يمثل منحنى σ σ

أ) فترات التقعر للأعلى والأسفل لمنحنى الاقتران v(m)


 $]\infty$ ، الفترتين $]-\infty$ - الفترتين $]-\infty$


] ∞ ، ۱]، [Y - x - [الفترتين] - <math>x - y ، أي أن : ق(س) مقعر للاعلى في الفترتين

(والمماس عندها يصنع زاوية منفرجة)

$$[1،7-]$$
 ومنها $0^{-/}(m)$ في الفترة

أي أن : ق(س) مقعر للاسفل في الفترة [- ١٠٢]

ب) الاحداثيات السينية لنقط الانعطاف

عند كل من m=1 ، m=-7 لانه يوجد مماس افقي للاقتران ق (m) أي أن : ق (m)=0 عند كل من النقطتين حيث عندها الاقتران متصل ويغير اتجاه تقعره .

السؤال السابع: اذا كان الاقتران v(m) كثير حدود معرفا في الفترة [٦٠٢] ويقع منحناه في الربع الأول ، ومتناقصا على مجاله ، وكان الاقتران ه v(m) = N - m بين أن الاقتران ك v(m) = v(m) متناقصا في [٦٠٢] . قv(m) كثير حدود v(m) متصل وقابل للاشتقاق

الحل

الحل

$$(w) = \Lambda - w$$
 نبحث في اشارته على الفترة

$$($$
شابت $) = -1$

$$(w) = (v \times a)(w)$$
 ، (w) متصل في الفترة $[7 \times 7]$ (لأنه حاصل ضرب اقترانين متصلين)

$$(\omega) \times (\omega)' = (\omega) \times (\omega) \times (\omega)' \times (\omega)' \Leftrightarrow (\omega)' \otimes (\omega)$$

$$-=-+-=(+\times -)+(+\times -)=(\omega)'$$

السؤال الثامن : ما أبعاد أكبر مخروط دائري قائم يمكن وضعه داخل كرة نصف قطرها ١٠ سم ؟

$$(m+1)^{\dagger}$$
 حجم المخروط $=\frac{\pi}{m}$ نوہ $=\frac{\pi}{m}$ نوہ $=\frac{\pi}{m}$ نوہ

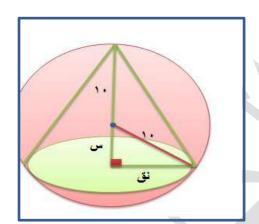
لكن س ٢+نو٨٥=١٠٠ (نظرية فيتاغورث)

بالتعويض بقيمة نعم^٢ في ح

$$(\omega + 1 \cdot) (^{\Upsilon} \omega - 1 \cdot \cdot) \frac{\pi}{\Psi} = 2 :$$

$$("\omega-"\omega)\cdot-\omega$$

$$(\Upsilon W\Upsilon - W\Upsilon \cdot - \Upsilon \cdot - \Upsilon \cdot)\frac{\pi}{\Upsilon} = '\mathcal{E}$$


$$\iota = {}^{\mathsf{T}} \mathcal{M} - \mathcal{M} - \mathcal{M} - \mathcal{M} = {}^{\mathsf{T}} \mathcal$$

باستخدام اختبار المشتقة الثانية:

$$\cdot > \left(\frac{\mathsf{T} \cdot \mathsf{r}}{\mathsf{r}} - \mathsf{r} \cdot -\right) \frac{\pi}{\mathsf{r}} = \left(\frac{\mathsf{r} \cdot \mathsf{r}}{\mathsf{r}}\right)^{\mathsf{r}} \mathcal{E} \iff (\omega \mathsf{T} - \mathsf{r} \cdot -) \frac{\pi}{\mathsf{r}} = \mathsf{r} \mathcal{E}$$

ن عندما
$$w = \frac{1}{m}$$
 قيمة عظمى (أي أن حجم المخروط أكبر ما يمكن عندما $w = \frac{1}{m}$

$$\frac{\wedge \cdot \cdot}{q} = \frac{1 \cdot \cdot}{q} - 1 \cdot \cdot = \frac{1}{q} - 1 \cdot$$

$$\boxed{\frac{7 \sqrt{7}}{7}} = \frac{\sqrt{100}}{4} = \sqrt{100} = \sqrt{100}$$

$$\frac{\xi}{\psi} = \frac{1}{\psi} + 1 = \omega + 1 = \xi \Leftarrow$$

$$\left[\frac{\xi}{m} - \xi\right]$$
 ، $\left[\frac{\gamma}{\gamma}\right]$ ، $\left[\frac{1}{\gamma}\right]$ ، $\left[\frac{1}{\gamma}\right]$. الابعاد هي

السؤال التاسع: اذا كان $\mathfrak{G}(w) = +\pi$ اس $- (w) + \pi$ س، $\pi \in \left[\frac{\pi}{7}, 1\right]$ حيث $\pi (w)$ قابل للاشتقاق ، أثبت أن الاقتران $\pi (w)$ متزايد في تلك الفترة .

$$(\omega + \omega) = (\omega) + $

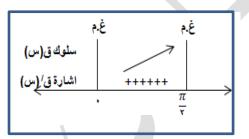
 $\left[\frac{\pi}{7}, \cdot\right]$ ففرض أن (0, + 4) نفرض أن (0, + 4) ك (0, -1) نفرض أن (0, + 4)

$$\left[rac{\pi}{7} \,
ightharpoonup
ight]$$
 ك $\left(rac{\pi}{7} \,
ightharpoonup
ight]$ ك الفترة

الحل

$$rac{\pi}{7}$$
 ، $rac{\pi}{7}$ ك $rac{\pi}{7}$ الفترة ك المنتقاق في الفترة

$$\left] \frac{\pi}{\Upsilon} \cdot \cdot \left[\ni \omega \cdot \Upsilon + \omega - (\omega)' \right] \right] d \leftarrow$$


بوضع ك
$$(m)=\cdots = -$$
جاس $m=m$ (مرفوض) بوضع ك $m=m$

$$\exists \frac{\pi}{7} \cdot \cdot \mid \exists \omega \forall \cdot \cdot \neq (\omega)' d \Leftarrow$$

ومن ملاحظة إشارةك (س) في الشكل المجاور:

$$\left[\frac{\pi}{7} \cdot \right]$$
 الفترة (m) متزاید في الفترة

$$\left[rac{\pi}{7} \cdot
ight]$$
 متزاید فی الفترة $\left(\omega
ight) + \omega \left(\omega
ight) \Leftrightarrow$

السؤال العاشر: الشكل المجاور يبين منحنى الاقترانين ق ، هـ المعرفين على [اهب]

بین أن الاقتران $\frac{\sigma^{(m)}}{a(m)}$ هو اقتران متزاید علی $[\gamma, \gamma]$.

من الرسم نلاحظ أن الاقتران هـ (س):

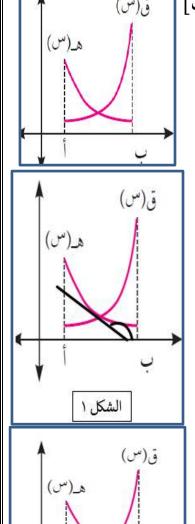
هـ (س) اقتران متناقص (حيث زاوية المماس عندها منفرجة لاحظ الشكل ١)

$$(w)$$
 يقع في الربع الأول (w)

و من الرسم نلاحظ أن الاقتران قه (س):

قه (س) اقتران متزايد (حيث زاوية المماس عندها منفرجة لاحظ الشكل ١)

$$\sqrt{(m)}$$
 فه $\sqrt{(m)}$ في الربع الأول $\sqrt{(m)}$


$$(w)$$
 مقعر للأعلى \Rightarrow $(w) > 0$

الآن بفرض أن:

$$(w)' = \frac{v'(w) + v'(w) + v'(w)}{v'(w)}$$
فإن : ك $(w)' = \frac{v'(w)}{v'(w)}$

$$\bigoplus = \frac{\bigoplus}{\bigoplus} = \frac{- \times \bigoplus - \bigoplus \times \bigoplus}{\bigoplus} = (\mathcal{P})' \mathcal{\Delta} \iff (\mathcal{P})' \mathcal{L}$$

$$\left[\begin{array}{c} \emptyset \end{array} \right] = \left[$

الشكل ٢

السؤال الحادي عشر : اذا كان $\mathfrak{O}(m)$ كثير حدود من الدرجة الثالثة ، جد قاعدة الاقتران $\mathfrak{O}(m)$ اذا علمت أن النقطة (۲۰- ۱) هي نقطة قيمة صغرى محلية ، وأن النقطة $(\mathfrak{P}(r))$ هي نقطة انعطاف للاقتران $\mathfrak{O}(m)$.

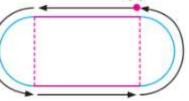
 \cdot = (۲) $^{\prime}$ هي نقطة قيمة صغرى محلية للاقتران υ (س) \Longrightarrow د (۲)= - (۲) \ast

 $\cdot = (\cdot)''$ هي نقطة انعطاف للاقتران $\mathfrak{U}(m) \Longrightarrow \mathfrak{G}(\cdot) = \gamma$ ، هي نقطة انعطاف للاقتران $\mathfrak{U}(m) \Longrightarrow \mathfrak{G}(n) = \gamma$

 $s+w+^{\dagger}+\cdots+^{\dagger}+\cdots+^{\dagger}=(w)$

$$\rightarrow \omega'(\omega) = 10^{10} + 10^$$

$$| \nabla = \mathbf{v} | \leftarrow \nabla = (\mathbf{v}) \mathbf{v} : \mathbf{v}$$


بالتعويض عن قيمة د و ب
$$\leftarrow 1 + 1$$
 $\leftarrow 1 + 2$ $\leftarrow 1 + 3$ بالتعويض عن قيمة د و ب

$$(\Upsilon)$$
بالتعويض عن قيمة ب \leftarrow \leftarrow بالتعويض عن قيمة ب

$$\boxed{ (w)_{\xi} = (w)_{\xi} = (w)_{\xi} }$$

السؤال الثاني عشر: مسار للسباق طوله ٤٠٠ م ، يحيط بميدان على شكل مستطيل في كل من طرفيه نصف دائرة . ما أبعاد المستطيل التي تجعل مساحته أكبر ما يمكن ؟

محيط المسار = ٢س + محيط الدائرة

$$(1)..... \qquad \boxed{ w = \cdot \cdot \cdot \cdot - d \text{ igs} }$$

مساحة المستطيل (م)
$$= Y$$
نوم $m = Y$ نوم $m = Y$ نوم $m = Y$ نوم

$$\frac{1 \cdot \cdot}{1 \cdot \cdot} = \frac{1 \cdot \cdot}{1 \cdot} = \frac{1 \cdot}{1 \cdot} = \frac$$

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

باستخدام اختبار المشتقة الثانية

م
$$"=-3$$
 d $<$ ، فإن $\frac{1}{4}$ عندها قيمة عظمى محلية $w=-3$ $w=-3$ $=$ $\frac{1}{4}$ $=$ $\frac{1}{4}$ $=$ $\frac{1}{4}$

$$\frac{Y \cdot \cdot}{d} = \frac{1 \cdot \cdot}{d} \times Y = \frac{Y \cdot \cdot}{d} = \frac{Y \cdot \cdot}{d} = \frac{Y \cdot \cdot}{d}$$
 الطول $| \cdot \cdot \cdot |$

السؤال الثالث عشر: سلك طوله ١٨ سم، صنع منه مثلثان كل منهما متساوي الاضلاع، ما طول كل من المثلثين ليكون مجموع مساحتيهما اصغر ما يمكن.

يكون ضلع المثلث الأول= mومنه محيط المثلث الأول= m

الحل

x=0 يكون ضلع المثلث الثانيx=0 ومنه محيط المثلث الثاني

 $au=-\infty+\omega$ حيث طول السلك = محيطي المثلثين = au س + au ص = au المثلثين

$$\langle 1 \rangle$$
..... $\sqrt{-7} = \omega$

مساحة المثلث الأول
$$= rac{\overline{w}}{2}$$
 س

مساحة المثلث الأول
$$=rac{7}{7}$$
س \times س \times جا 7 $\stackrel{\circ}{=}$ مساحة المثلث الأول $=rac{7}{7}$ س \times

$$rac{\overline{m}}{2} = rac{\overline{m}}{2}$$
 مساحة المثلث الثاني

مساحة المثلث الثاني
$$rac{\overline{r}\sqrt{r}}{\xi}=\infty$$
مساحة المثلث الثاني $=rac{\overline{r}\sqrt{r}}{\xi}$ مساحة المثلث الثاني مساحة المثلث الثاني مساحة المثلث الثاني مستحا

المطلوب: طول كل من المثلثين ليكون مجموع مساحتيهما اصغر ما يمكن. منه نوجد مجموع مساحتيهما = م

$$\overline{\gamma} = \frac{\overline{\gamma}}{\xi} + \gamma$$
 س γ بالتعویض من γ

$$\left[\begin{smallmatrix} \Upsilon & \omega + \left(\begin{smallmatrix} \Upsilon & \omega + \omega & \Upsilon & \Upsilon & \Upsilon \end{smallmatrix} \right) \right] \frac{\overline{TV}}{\xi} = \begin{smallmatrix} \Upsilon & \omega & \overline{TV} \\ \xi & \xi & \xi \end{smallmatrix} + \begin{smallmatrix} \Upsilon & (\omega - \tau) & \overline{TV} \\ \xi & \xi & \xi \end{smallmatrix} = \begin{smallmatrix} \Upsilon & \omega & \overline{TV} \\ \xi & \xi & \xi \end{smallmatrix}$$

$$\overline{\Psi} / \Psi - \Psi = (1 \Upsilon - \Psi) = \sqrt{\Psi} / \Psi = 1 \Upsilon - \Psi$$

باستخدام اختيار المشتقة الاولى

اعداد

سلوك م ++++++ اشارة م

ومن ملاحظة إشارة / في الشكل المجاور:

یکون عند $\omega = \gamma$ قیمهٔ صغری محلیهٔ

CANCELLA DE L'ANTINE
الوحدة الثالثة / حساب المصغورة ات والمحددات

الدرس الأول المصفوفات

القسم الأول: الملخص

المصفوفة: هي تنظيم مستطيل الشكل لمجموعة من الأعداد على هيئة صفوف وأعمدة محصورين بين ويرمز لها بأحد حروف الهجاء أ ، ب ، وتسمى الأعداد داخل المصفوفة مدخلات .

لاحظات:

 ١) تتحدد رتبة المصفوفة بعدد الصفوف وعدد الأعمدة فيها ٧×ن حيث ١: عدد الصفوف ى ن: عدد الأعمدة (تأمل الشكل المقابل)

عدد مدخلات المصفوفة = عدد صفوفها \times عدد أعمدتها \times

٣) تتحدد أي مدخلة في المصفوفة بحسب الصف و العمود الواقعة فيهما

صفوفات خاصة

المصفوفة المربعة: هي المصفوفة التي يكون فيها عدد صفوفها = عدد اعمدتها = γ

(تسمى مصفوفة مربعة من الرتبة)

هي مصفوفة مربعة من الرتبة الثانية
$$\begin{bmatrix} 1 & -1 \\ q & q \end{bmatrix}$$

 $\left.\begin{array}{ll} & & & & \\ & & & \\ & & & \\ & & & \end{array}\right\} = \left.\begin{array}{ll} & & & \\ & & \\ & & \\ & & \end{array}\right\} = \left.\begin{array}{ll} & & \\ & & \\ & & \\ & & \\ & & \end{array}\right\} = \left.\begin{array}{ll} & & \\ & & \\ & & \\ & & \\ & & \end{array}\right\} = \left.\begin{array}{ll} & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}\right\} = \left.\begin{array}{ll} & & \\ & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ يرمز لها بالرمز م

هي مصفوفة وحدة من الرتبة الثانية
$$\begin{bmatrix} \cdot & 1 \\ \cdot & 1 \end{bmatrix}$$

٣) المصفوفة الصفرية (و): هي المصفوفة التي جميع مدخلاتها أصفار

٤) مصفوفة الصف: هي المصفوفة المكونة من صف واحد

"" = [1 - 1] هي مصفوفة صف من الرتبة "" + 1

مصفوفة العمود: هي المصفوفة المكونة من عمود واحد

م
$$rac{1}{K}: \omega = egin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$$
هي مصفوفة عمود من الرتبة $m imes 1$

٦) المصفوفة القطرية : هي المصفوفة المربعة س بحيث $m_{ya} = \cdot \cdot \cdot \forall z \neq a$

$$egin{align*} egin{align*} & & & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$$

الرئيسي للمصفوفة س

٧) المصفوفة المثلثية العلوية : هي المصفوفة المربعة التي تكون مدخلاتها التي تحت القطر الرئيسي أصفار ا

$$\begin{bmatrix} w_1 & w_2 & w_3 & w_4 & w_5 & w$$

تعریف:

تساوي مصفوفتين: تتساوى المصفوفتين أ ، ب اذا كان لهما نفس الرتبة ، وكانت مدخلاتهما المتناظرة

$$(1 = 1 + 1)$$
 اذا وفقط اذا كان أيه $= 1 + 1$

القسم الثاني: حلول تمارين الكتاب

السؤال الأولى: ينتج مصنع ألبان نوعين من العبوات حجم كبير، وحجم صغير، فإذا كان لهذا المصنع فروع في كل من: الخليل وطولكرم وغزة، وكان عدد العبوات التي ينتجها كل فرع يوميا كما يأتي:

فرع الخليل: ٨٠٠ عبوة من الحجم الكبير، ٩٠٠ عبوة من الحجم الصغير.

فرع طولكرم: ٢٠٠ عبوة من الحجم الكبير ، ٥٠٠ عبوة من الحجم الصغير.

فرع غزة: ٥٠ ٧ عبوة من الحجم الكبير ، ٥٠٠ عبوة من الحجم الصغير.

فرع أ: نظم المعلومات السابقة بمصفوفة، بحيث تمثل الصفوف فيها أنواع العبوات، ثم اكتب رتبتها؟

فرع ب: ماذا يمثل مجموع مدخلات العمود الثاني؟

الحل تمثيل مجموع انتاج فرع طولكرم = ١٠٥٠ = ١٠٥٠ عبوة

السؤال الثاني: إذا كانت

الحل

$$\begin{bmatrix} \xi - & \circ & Y \\ w & Y & Y \\ Y & w - & Y \\ Y & Y & Y \end{bmatrix} = \hat{I}$$

فرع أ: رتبة المصفوفة أ

 $(\gamma_1 + \gamma_1)$ قیمة فرع ب

$$7 = -3 + 7 = 7$$

 $YV = {}^{\mathsf{m}} \left({}_{\mathsf{TM}} \right)$ أن فرع جـ : قيمة س بحيث أن

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

السؤال الثالث: إذا كانت
$$\begin{bmatrix} \gamma & \omega & \gamma \\ 0 & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \omega & \gamma \\ 0 & \gamma & 0 \end{bmatrix}$$
، فجد قيمة/ قيم س.

الحل بما أن المصفوفتان متساويتان إذن مدخلاتهما المتناظرة متساوية ، ومنها:

 $\Upsilon = \omega \leftarrow 1 - \omega = \Upsilon$

$$m^7+1=1$$
 السالب مرفوض $\pm \pm 0$ السالب مرفوض

السؤال الرابع: كون مصفوفة مربعة من الرتبة ٢ بحيث تعطي مدخلاتها حسب العلاقة $_{_{na}}= 7^{_{y-a}}$.

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 1 \iff \frac{1}{7} = 7^{1-7} = 7$$

$$= 1 \iff \frac{1}{7} = 7^{1-7} = 7$$

السؤال الخامس: إذا كانت
$$= \begin{bmatrix} -7 & 0 & 7 \\ 0 & W & 7 \end{bmatrix}$$
 ، فجد المصفوفة ب من الرتبة \times ۲ السؤال الخامس:

بحيث أن $1_{2a} = -$ بحيث أن $1_{2a} = -$

$$\begin{bmatrix} 7 & 7 - \\ 7 - & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 1 & 1 \\ 7 & 1 & 1 \\ 7 & 1 & 1 \end{bmatrix} = \psi \Leftarrow$$

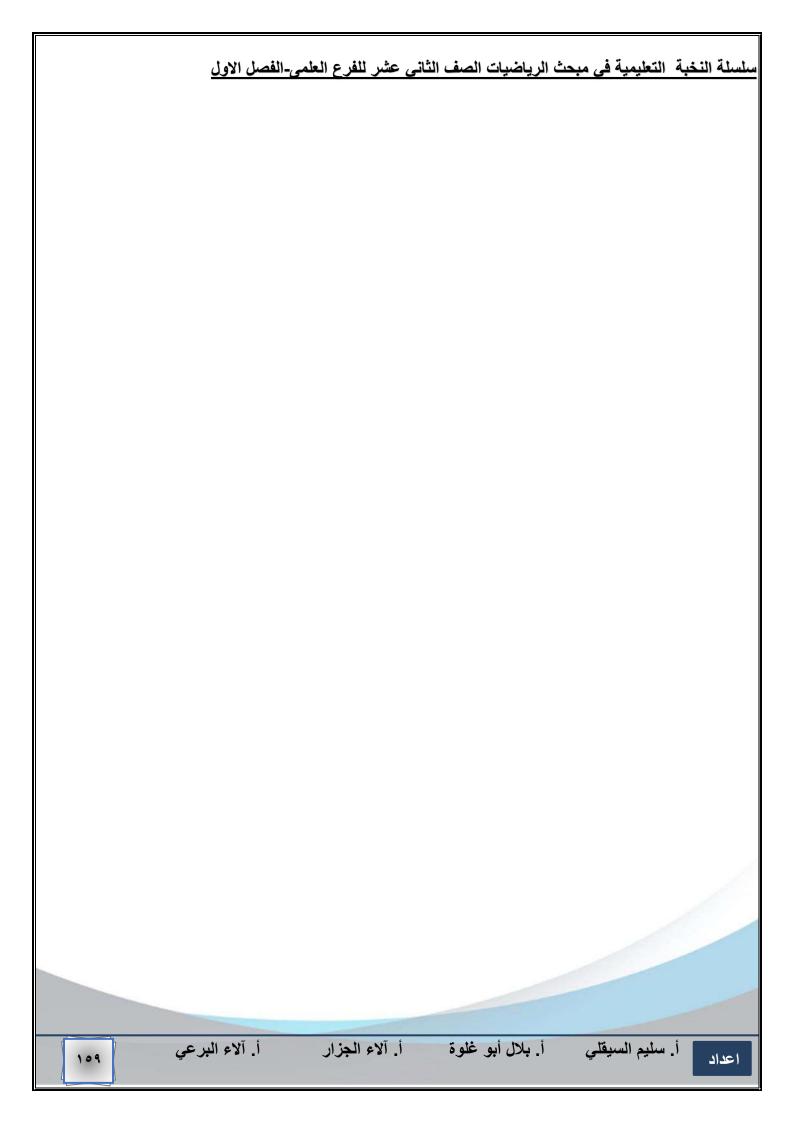
ملاحظة: (قلب الصفوف أعمدة)

القسم الثالث: اسئلة اثرائية

المصـــفوفة

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
ب	$egin{aligned} egin{aligned} egin{aligned} & egin{aligned} & egin{aligned} & & egin{aligned} & & & & & & & & & & & & & & & & & & &$	•
	i) ۱۲ (ب ب)-۱۲ چ)۲۰۰ د) ۱۰۰	
د	$=$ إذا كان $egin{bmatrix} -\omega^{\lambda} \\ -\omega^{\lambda} \end{bmatrix}$ ، فإن قيمة ص	۲
	$\{\xi-\}$ (ع $\{\xi\}$ (خ $\{\xi\}$ (غ $\{\xi\}$ (أ	
٦	اذا کان $\begin{bmatrix} w^7 & \gamma \\ w & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma & \eta \end{bmatrix}$ ، فإن قيمة س هي:	٣
	$\{ \gamma \} $ (۳۰-۲) (۳۰-۲) (۳) (۳) (۳) (۳)	
75	$=\left[oldsymbol{\gamma},oldsymbol{\gamma},oldsymbol{\gamma} ight]=oldsymbol{\gamma}$ ا الخانت ب $=\left[oldsymbol{\gamma},oldsymbol{\gamma} ight]=oldsymbol{\gamma}$ اء $oldsymbol{\gamma}=oldsymbol{\gamma}$ فإن قيمة $\left[oldsymbol{\gamma},oldsymbol{\gamma}$	٤
€	اً) ا _{۱۲} ۱ د) ب _{۱۲} ۱ ج) ۱ _۲ ۱ د) ب _{۲۱} ۱	
	مصفوفة الوحدة من بين المصفوفات الآتية هي: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	٥
ε	$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} () \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} ($	
Í	اذا کان $\begin{bmatrix} \gamma & \gamma \\ \gamma & 1 \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma & 1 \end{bmatrix}$ ، فإن قيمة $w+w$ هي:	7
	أ) ٢ (ب) ٤ ج) ٢- (د) -٤	

اذا کان $\begin{bmatrix} \xi & w + \omega \\ -\lambda & - \end{pmatrix} = \begin{bmatrix} 7 & 7 \\ 7w & 7 \end{bmatrix}$ ، فإن قيمة ω ، ω على الترتيب هما: 3 i) - ؛ ، ۲ ب ب ک ، ۲ ج) ۲ ، -۲ د)-۲ ، -۷


الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
الاجابة: -۱ ۱۰ ۱۰ ۲ ۲۰ ۱۵ ۲۰ ۲۰ ۱۵ ۸	اكتب المصفوفة أ من الرتبة ٣ $ imes 3$ بحيث: أ $_{ m ga} = 8$ هـ اكتب المصفوفة أ من الرتبة ٣ $ imes 3$ بحيث: أ $_{ m ga} = 8$	•
*	إذا كان $\begin{bmatrix} w^7-w^7 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & N \\ 1 & 2 \end{bmatrix}$ ، جد قيمة المقدار $w^7-w^7+w^7$ ؟	*
٦ ٤	إذا كان $\begin{bmatrix} w^7 + w^7 & 1 \\ \xi & \xi \end{bmatrix} = \begin{bmatrix} 1 & \gamma & \gamma \\ \xi & \xi \end{bmatrix}$ ، جد قيمة المقدار $(w-w)^7$?	٣
17, 77	اذًا كان $\begin{bmatrix} w^7 & w^7 \end{bmatrix} = \begin{bmatrix} 0 & 7 & 1 \end{bmatrix}$ ، جد قیمة المقدار $w + w + 0$?	٤

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
٥= ١ ، ب = -٣ ج = ٢ ، ٤= ٢	$\begin{bmatrix} 1-7 & 7+7 \\ 1-7 & 7-7 \end{bmatrix} = \begin{bmatrix} 1-7 & 7+7 \\ 7-57 & 7-7 \end{bmatrix}$ جد قیم $\begin{bmatrix} 1-7 & 7+7 \\ 7-57 & 7-7 \end{bmatrix}$	•
۲ = ۲ ، ب = ۲ ٤ = ۶ ، ۲ - = ۶	إذا كان $\begin{bmatrix} 1+ v & 1- v \\ 1+ v & 1- v \end{bmatrix} = \begin{bmatrix} 8 & -8 \\ 0 & V \end{bmatrix}$ جد قيم اىبىجى $s = 1 + v + k$	4
س = ۰، ع=±۲	$\begin{bmatrix} w & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} v & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} v & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ جد قیمه $v = 0$ التي تحقق $v = 0$ التي تحقق $v = 0$	1

101

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

الوحدةالثالثة/حماب المصغوفات والمحددات

الدرس الثاني العمليات على المصفوفات / تدريبات

الملتقى التربوي www.wepal.net

القسم الأول: الملخص

جمع المصفوفات:

اذا كان أى ب مصفو فتين من الرتبة $1 \times v$ فان جـ = أ + ب هي مصفو فة من الرتبة $1 \times v$ حيث مدخلاتها ناتجة من جمع المدخلات المتناظرة في كل من أ ، ب $\left(\frac{1}{2} +

ضرب المصفوفة بعدد حقيقي :

اذا كان أ مصفوفة من الرتبة $\gamma imes v$ وكان ك عددا حقيقيا γ فان ك أ $\gamma = \gamma + \gamma \gamma$ محيث جهي مصفوفة من الرتبة $\wedge \times v$ وتكون مدخلاتها ناتجة من : جي =ك 1 لجميع قيم ي 2 هـ

طرح المصفوفات:

خصائص جمع المصفوفات وضربها بعدد حقيقى:

(التبدیل) أ +
$$\psi = \psi + 1$$

(
$$|\dot{1} + \dot{\nu}| + = -\dot{\nu} + (\dot{1} + = -\dot{\nu})$$

(المصفوفة المحايد)
$$+ e = e + 1 = 1$$

$$(1 + (-1) = (-1) + 1 = 0$$

ضرب المصفوفات:

اذا كانت أ مصفوفة من الرتبة $\gamma \times \omega$ ، ب مصفوفة من الرتبة $\omega \times U$ فان حاصل الضرب أ . ب = ج ، حيث ج مصفوفة من الرتبة $\gamma \times U$ وتكون مدخلات المصفوفة ج على النحو

$$\boldsymbol{z}_{\scriptscriptstyle 2} = \boldsymbol{\beta}_{\scriptscriptstyle 2} \times \boldsymbol{\gamma}_{\scriptscriptstyle 1} + \boldsymbol{\beta}_{\scriptscriptstyle 2} \times \boldsymbol{\gamma}_{\scriptscriptstyle 3} + \cdots + \boldsymbol{\beta}_{\scriptscriptstyle 2} \times \boldsymbol{\gamma}_{\scriptscriptstyle 3} + \cdots + \boldsymbol{\beta}_{\scriptscriptstyle 2} \times \boldsymbol{\gamma}_{\scriptscriptstyle 3}$$

خصائص عملة الضرب على المصفوفات:

اذا كان أ ، ب ، ج مصفوفات حيث أن عمليتي الضرب والجمع معرفتان ، / المصفوفة المحايدة

، ك∈ ع فان :

(
$$\dot{v} + \dot{v} = (\dot{1} \cdot \dot{v}) + (\dot{1} \cdot \dot{v})$$
) ($\dot{v} = (\dot{1} \cdot \dot{v}) + (\dot{1} \cdot \dot{v})$

$$(i + \psi) . = (i . =) + (\psi . =)$$
 (توزيع الضرب على الجمع من اليسار)

ادفع نفسك للأمام كل يوم

القسم الثائي: حلول تمارين الكتاب

السؤال الأول: إذا كانت
$$l = \begin{bmatrix} 7 & 1 & \xi - \\ 1 & 7 & 7 \end{bmatrix}$$
، $v = \begin{bmatrix} -\xi & 1 & \xi - \\ 1 & 0 & 1 \end{bmatrix}$ فجد:

فرع أ: ب+٢ ، ١٣ - ٢ب

$$\begin{bmatrix} 0 & \Upsilon - & \Upsilon \\ \Upsilon & \gamma & 1 \end{bmatrix}$$
 $+ \begin{bmatrix} \Upsilon & 1 & \xi - \\ \Upsilon & 0 & \chi \end{bmatrix} = \dot{\Upsilon} + \dot{\Upsilon}$ الحل $\dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{\Upsilon}$ $\dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{\Upsilon} = \dot{\Upsilon} + \dot{\Upsilon} = \dot{$

 $\begin{bmatrix} 17 & \circ - & \cdot \\ 17 & 17 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 7 & \xi - \\ \xi & 17 & 7 \end{bmatrix} + \begin{bmatrix} 7 & 1 & \xi - \\ \Lambda & \circ & 7 \end{bmatrix} =$

$$\begin{pmatrix} \begin{bmatrix} 7 & 1 & \xi - \\ \Lambda & 0 & 7 \end{bmatrix} Y \end{pmatrix} - \begin{pmatrix} \begin{bmatrix} 0 & Y - & Y \\ Y & 7 & 1 \end{bmatrix} Y \end{pmatrix} = \psi Y - i Y$$

$$\begin{bmatrix} Y & 1 & 1 - & 1 & \xi \\ 1 & 1 & 1 & \xi \end{bmatrix} - \begin{bmatrix} 1 & 0 & 4 - & 7 \\ 7 & 1 & 1 & \xi \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

 $\frac{1}{60}$ فبین أن ج $+ c = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ، $c = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ فبین أن ج

$$\begin{bmatrix} \cdot & q \\ q & \cdot \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & Y - \end{bmatrix} + \begin{bmatrix} 1 - \xi \\ \xi & Y \end{bmatrix} = 1 + \xi + \xi = 1 + \xi + \xi = 1 + \xi + \xi = 1 $

$$= p\begin{bmatrix} \cdot & 1 \\ - & 1 \end{bmatrix} = p a_{\gamma} = 1$$
الطرف الأيسر

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} + w = w + \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} + w = w + \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$
 باضافة نظير الجمعي للمصفوفة $\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$

$$\omega \xi = \begin{bmatrix} \cdot & 1 - \\ 1 - & \cdot \end{bmatrix} + \begin{bmatrix} 1 & \cdot - & 1 \\ \vdots & 1 & \cdot \end{bmatrix}$$

$$\omega$$
ا $\xi = \begin{bmatrix} 1 & \cdot - & 1 \\ & & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} \frac{1 \cdot -}{\xi} & \frac{1}{\xi} \\ \frac{\pi}{\xi} & \frac{1 \cdot \xi}{\xi} \end{bmatrix} = \omega \Leftarrow \begin{bmatrix} 1 \cdot - & 1 \\ \pi & 1 \cdot \end{bmatrix} \frac{1}{\xi} = \omega$$

السؤال الثالث: إذا كانت
$$= \begin{bmatrix} 0 & 7 \\ \gamma & 1 \end{bmatrix}$$
 فجد المصفوفة أ بحيث 7 الج $= 6$ و مصفوفة صفرية)

$$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \circ & & \\ & & \\ & & \end{bmatrix} + |Y| \iff \emptyset = [P]$$

$$\begin{bmatrix} \circ & \mathsf{Y} - \\ \mathsf{Y} - & \mathsf{I} - \end{bmatrix} + \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix} = \begin{bmatrix} \circ & \mathsf{Y} - \\ \mathsf{Y} - & \mathsf{I} - \end{bmatrix} + \begin{bmatrix} \circ - & \mathsf{Y} \\ \mathsf{Y} & \mathsf{I} \end{bmatrix} + \mathsf{PY} \iff$$

$$\Rightarrow 74+e = \begin{bmatrix} -7 & \circ \\ -1 & -1 \end{bmatrix}$$

$$\begin{bmatrix} \circ & \mathsf{Y} - \\ \mathsf{W} - & \mathsf{I} - \end{bmatrix} = \mathsf{I} \mathsf{Y} \Leftarrow$$

$$\begin{bmatrix} \frac{\circ}{7} & 1 \\ \frac{r}{7} & \frac{1}{7} \end{bmatrix} = 1 \iff \begin{bmatrix} \circ & 7 - \\ r - & 1 - \end{bmatrix} \frac{1}{7} = 1 \iff$$

$$egin{aligned} egin{aligned} eg$$

$$\begin{bmatrix} \cdot \\ \mathbf{q} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} \leftarrow \begin{bmatrix} \cdot \\ \mathbf{q} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} + \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} \leftarrow \begin{bmatrix} \cdot \\ \mathbf{q} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} + \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot \\ \mathbf{m} \\ \mathbf{m} - \end{bmatrix} = \begin{bmatrix} \cdot$$

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

من مساورة المدخلات المتناظرة ك فان:

بالتعويض عن قيمة ص لايجاد س:

$$\Upsilon - = \Upsilon \times \circ + \omega \Upsilon \subset$$

$$7-=\omega$$
 \leftarrow $1\lambda-=\omega$ \leftarrow $\gamma-=$ $10+\omega$ $\gamma-=$

$$\boxed{ 1 \leftarrow \begin{bmatrix} \mathbf{w} & \mathbf{1} \\ \mathbf{1} \mathbf{1} - \mathbf{v} - \end{bmatrix} = \mathbf{w} + \mathbf{v} = \begin{bmatrix} \mathbf{w} & \mathbf{1} \\ \mathbf{1} \mathbf{v} - \mathbf{v} \end{bmatrix} }$$

$$\begin{array}{c|c} Y \leftarrow & \begin{array}{c|c} \circ - & W \\ \circ - & A \end{array} = \omega - \omega W$$

$$\begin{bmatrix} \mathbf{V} - & \mathbf{V} \\ \mathbf{Y} \mathbf{1} - & \mathbf{1} \mathbf{\xi} \end{bmatrix} = \mathbf{W} \mathbf{V} \iff \begin{bmatrix} \mathbf{I} \cdot \mathbf{I} & \mathbf{I} \\ \mathbf{I} \cdot \mathbf{I} - & \mathbf{I} \mathbf{I} \end{bmatrix} + \begin{bmatrix} \mathbf{W} & \mathbf{I} \\ \mathbf{I} \mathbf{I} - & \mathbf{I} \mathbf{I} \end{bmatrix} = \mathbf{W} \mathbf{V}$$

$$\begin{bmatrix} 1 - & 1 \\ \Psi - & Y \end{bmatrix} = \omega$$

$$egin{align*} egin{align*} $

$$\begin{bmatrix} \mathbf{r} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} - \mathbf{r} - \end{bmatrix} = \mathbf{r} + \begin{bmatrix} \mathbf{1} - \mathbf{1} \\ \mathbf{r} - \mathbf{r} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{r} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} - \mathbf{r} - \end{bmatrix} + \begin{bmatrix} \mathbf{1} & \mathbf{1} - \\ \mathbf{r} & \mathbf{r} - \end{bmatrix} = \mathbf{r} + \begin{bmatrix} \mathbf{1} - \mathbf{1} \\ \mathbf{r} - \mathbf{r} \end{bmatrix} + \begin{bmatrix} \mathbf{1} & \mathbf{1} - \\ \mathbf{r} & \mathbf{r} - \end{bmatrix}$$

$$\begin{bmatrix} \xi & \cdot \\ \Lambda - & \xi - \end{bmatrix} = 0$$
 و $\Upsilon + \gamma$

$$\begin{bmatrix} \Upsilon & \cdot \\ \xi - & \Upsilon - \end{bmatrix} = \omega = \begin{bmatrix} \xi & \cdot \\ \Lambda - & \xi - \end{bmatrix} \frac{1}{\Upsilon} = \omega \Leftarrow \begin{bmatrix} \xi & \cdot \\ \Lambda - & \xi - \end{bmatrix} = \omega \Upsilon$$

$$\begin{bmatrix} \xi & \cdot \\ \lambda - & \xi - \end{bmatrix} = \omega \Upsilon$$

الدرس الثاني/ تمارين ٣-٢

السؤال الأول: إذا كانت أ، ب، ج مصفوفات بحيث أن أ. ب= ج فما رتبة ب في كل من الحالات الآتية:

فرع أ: أبده ، ج بدي

رتبة المصفوفة ب هي ا ×٥

السؤال الثاني: إذا كانت
$$l = \begin{bmatrix} \xi - 1 \\ 1 \end{bmatrix}$$
 ، ب $= \begin{bmatrix} \zeta - 1 \\ 1 \end{bmatrix}$ $= \begin{bmatrix} \xi - 1 \\ 1 \end{bmatrix}$ المؤال الثاني: إذا كانت $l = \begin{bmatrix} \zeta - 1 \\ 1 \end{bmatrix}$ ، ب $= \begin{bmatrix} \zeta - 1 \\ 1 \end{bmatrix}$ ، ب $= \begin{bmatrix} \zeta - 1 \\ 1 \end{bmatrix}$ المؤال الثاني: إذا كانت $l = \begin{bmatrix} \zeta - 1 \\ 1 \end{bmatrix}$ ، ب $= \begin{bmatrix} \zeta - 1 \\ 1 \end{bmatrix}$ ، $= \begin{bmatrix}$

فرع أ: ا·ب

$$\begin{bmatrix} \mathbf{r} & \mathbf{r}$$

فرع <u>ب:</u> ج·ب

بما أن عدد الأعمدة للمصفوفة ج يساوي عدد صفوف المصفوفة ب فيكمن ايجاد ج · ب :

الحل

$$\begin{bmatrix} \Upsilon - & \Upsilon & \circ \\ \Upsilon & & \star \end{bmatrix} \begin{bmatrix} \xi - & \Upsilon \\ \circ & \Upsilon \\ \Upsilon & \Upsilon \end{bmatrix} = \varphi \cdot \varphi$$

$$\begin{bmatrix} \mathbf{r} \cdot \mathbf{r} & \mathbf{r} \cdot \mathbf{r} \\ \mathbf{r} & \mathbf{r} \cdot \mathbf{r}$$

<u>فرع جـ</u> : ۱۰۱

بما أن عدد الأعمدة للمصفوفة إيساوي عدد صفوف المصفوفة إفيكمن ايجاد ١٠١:

$$\begin{bmatrix} 7 & \xi & Y & 0 \\ W & \xi & 0 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 0 & \xi \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & w & W \\ Y - & \xi & 1 - \end{bmatrix}$$
 السؤال الثالث: جد قیم w ، ص بحیث w ، ص بحیث w

$$\begin{bmatrix} 7\xi & 7 \\ 7\xi & 0 \end{bmatrix} = \begin{bmatrix} \xi + \omega \omega + 1 \lambda & 70 + \omega \xi + 7 \\ 17 - \omega + 1 - 1 - 17 + 1 - \end{bmatrix}$$

$$\begin{bmatrix} 7 & 7 & 7 & 7 \\ 7 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 & 7 & 0 & 0 \\ 7 & 7 & 0 & 0 & 0 & 0 \end{bmatrix}$$

من تساوي المدخلات المتناظرة:

$$\overline{Y-=\omega} \leftarrow A-=\omega \xi \leftarrow Y \cdot = YA+\omega \xi$$

السؤال الرابع: إذا كانت
$$w=1$$
 $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ $= 1$ افبين أن $w=0$ السؤال الرابع: إذا كانت $w=1$ $= 1$ $= 1$ $= 1$ السؤال الرابع: إذا كانت $w=1$

$$(+1)(+1)(+1)$$
 فبین أن: $1 - \begin{bmatrix} 1 & 1 \\ \xi & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ \xi & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ ، فبین أن: $1 - \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 0 & \xi \\ q & \cdot \end{bmatrix} = \begin{bmatrix} 1 & Y \\ w & \cdot \end{bmatrix} \begin{bmatrix} 1 & Y \\ w & \cdot \end{bmatrix} = I \cdot I = Y (I)$$

$$\begin{bmatrix} 1 & Y \\ 1 & X \end{bmatrix} = \begin{bmatrix} Y & Y \\ Y & Y \end{bmatrix} = \begin{bmatrix} Y & Y \\ Y & Y \end{bmatrix} = Y (II)$$

$$\begin{bmatrix} 1 & Y \\ 1 & X \end{bmatrix} = \begin{bmatrix} Y & Y \\ 1 & X \end{bmatrix} = \begin{bmatrix} Y & Y \\ Y & Y \end{bmatrix} = \begin{bmatrix}$$

$$(++)(-+)^{\dagger} \neq (-+)^{\dagger} + (++)^{\dagger}$$
نلاحظ أن

السؤال السادس : إذا كانت
$$l=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 ، $l=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ ، فهل يمكن إيجاد قيمة/قيم س بحيث أن: $l=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

$$\begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
1 & 1
\end{bmatrix} = \begin{bmatrix}
1$$

 $\emptyset = \emptyset$ م م م ک 0 لا يمكن إيجاد قيمة س؛ لأن المصفوفتان غير متساويتان حيث $0 \neq 0$

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

$$\begin{bmatrix} \cdot & 1 \\ 1 - & \overline{\psi} \end{bmatrix} = = \begin{bmatrix} 7 & \psi \\ \cdot & 1 \end{bmatrix} = \cdot \begin{bmatrix} 7 & \psi \\ \psi - \end{bmatrix} =$$
ا خوا کانت $1 = 1$

فرع أ: جد المصفوفة د بحيث أن: 1+ c = c. ر

حتى يصبح جمع المصفوفة + مع المصفوفة + مع المصفوفة + ان يكونوا من نفس الرتبة + رتبة المصفوفة + بفرض أن المصفوفة + المصفوفة + بفرض أن المصفوفة +

$$\begin{bmatrix} w \times Y + w \times Y \\ w \times Y + w \times Y \end{bmatrix} = \begin{bmatrix} w + Y \\ w + Y - \end{bmatrix} \Leftarrow \begin{bmatrix} w \\ w \end{bmatrix} \begin{bmatrix} Y & Y \\ Y \end{bmatrix} = \begin{bmatrix} w \\ Y - \end{bmatrix} + \begin{bmatrix} Y \\ Y - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Rightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Rightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Rightarrow \begin{bmatrix} w + Y \\ w - \end{bmatrix} \Leftrightarrow \begin{bmatrix} w +$$

<u>فرع ب:</u> بين أن: ج = ج

$$\begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} 1 - \times \cdot + \cdot \times 1 \\ 1 - \times \cdot - + \cdot \times \overline{\forall V} \end{bmatrix} = \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\forall V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V} \end{bmatrix} \begin{bmatrix} \cdot & \cdot \\ 1 - & \overline{\lor V}$$

القسم الثالث: اسئلة اثرائية

العمليات على المصفوفات

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
د	اذا کانت 1 ، ب ، ج مصفوفات حیث $1 \times \psi = \pi$ وکانت رتبة ب تساوی $7 \times \%$ ورتبة $\pi = 7 \times \%$ فان رتبة $1 \times \%$ ب $1 \times $	•
ب	اذا کانت $l = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ ، $v = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ ، $v = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، $v = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. $v = \begin{bmatrix} $	۲
ب	اذا کان $\begin{bmatrix} \gamma & \gamma & \omega \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ فان قیمتي س ، ص هما :	٣
ب	مجموعة قيم س التي تجعل: $[\Upsilon w] \begin{bmatrix} o \\ w \end{bmatrix} = [\ P \] $ هي أ $\{ O \ S \ S \ C \ B \} $ ب $\{ O \ S \ S \ B \} $ ج $\{ O \ S \ S \ S \ B \} $ ب $\{ O \ S \ S \ S \ S \ S \ S \ S \ S \ S \$	٤
ب	اذا كانت $^{1}_{Y\times Y}$ 2	0
Í	$=\omega+\omega=0$ اذا کانت $\begin{bmatrix} \gamma & \xi \\ \gamma & \gamma \end{bmatrix}=\begin{bmatrix} \omega & \gamma \\ 0-1-\end{bmatrix}+\begin{bmatrix} 0 & \gamma \\ \omega & 1-\end{bmatrix}$ فان $\omega+\omega=0$ اذا کانت $(1,0)$ ب $(1,0)$ ب $(1,0)$ ب $(1,0)$ از	٦

أ. آلاء البرعي

171

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

	لنخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي-الفصل الاول	سلسلة ال
د	اذا كانت f ى بى جەم مصفوفات بىيث أن $f_{i_{ imes Y}} imes _{i_{ imes Y}} = جى ئىن i_{ imes Y} + 2 تساوي i_{ imes Y} + 2 د) ه$	٧
	اذا كانت ١ ، ب ، ج مصفوفات بحيث تكون عملية الجميع والطرح معرفتين وكان ك عدد حقيقي	٨
	فان العبارة الصحيحة فيما يلي هي : أ) اذا كان ﴿ بِ اللهِ عَنْ بِ =ج	
د	ب) ا . ب = ب. ا ج) ك (اب) = (ك) . (اك ب)	
	$(2) \cdot (1 - 1) \cdot (2 - 1) $	

$\begin{bmatrix} \lambda - & \ddots \\ \xi & \ddots \end{bmatrix} = \omega$	اذا علمت ان $\frac{1}{\gamma}$ ا $=$ ا $=$ ا $=$ ان علمت ان $\frac{1}{\gamma}$ ا $=$ ا $=$ المصفوفة س التي تحقق $\frac{\gamma}{\gamma}$ بد المصفوفة س التي تحقق $\frac{\gamma}{\gamma}$ بد المصفوفة س التي تحقق $\frac{\gamma}{\gamma}$ بد المصفوفة س التي تحقق $\frac{\gamma}{\gamma}$	•
[7 1] [7 2]	$\left[egin{array}{cccccccccccccccccccccccccccccccccccc$	*

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

$ \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$		فبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي-الفصل الاول	سلسلة النخ
The state of the	ب = [۲۲]		٣
$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = 0$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + 0 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} + 0 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} + 0 = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 $	ر اس = الم		٤
$ Y - \begin{bmatrix} Y & Y - \\ 0 - & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ \cdot & Y \\ 0 - & 1 - \end{bmatrix} \begin{bmatrix} Y & 1 & 1 \\ \cdot & Y & 1 - \end{bmatrix} $ $ = \begin{bmatrix} 0 & 1 \\ \cdot & Y & 1 - \end{bmatrix} $ $ = \begin{bmatrix} 0 & 1 \\ \cdot & Y & 1 - \end{bmatrix} $ $ = \begin{bmatrix} 0 & 1 \\ \cdot & Y & 1 - \end{bmatrix} $ $ = \begin{bmatrix} 0 & 1 \\ \cdot & Y & 1 - \end{bmatrix} $	$\begin{bmatrix} \frac{Y-}{o} & Y-\\ \frac{YY-}{o} & \frac{Y}{o} \end{bmatrix} = \omega$		٥
$V = \frac{1}{1 - 1}$ اذا کانت $V = \begin{bmatrix} V & Y & 1 \\ 1 & V & 1 \end{bmatrix}$ وکانت $V = \begin{bmatrix} V & Y & 1 \\ 1 & V & 1 \end{bmatrix}$ وکانت $v = \frac{1}{1 - 1}$	۲-		٦
ر المار الم		اذا کانت $= \begin{bmatrix} \gamma & \gamma \\ 1 & \gamma \end{bmatrix}$ ، وکانت $= \begin{bmatrix} \gamma & \gamma \\ \gamma & \gamma \end{bmatrix}$ ، وکانت $\gamma = \gamma = \gamma$ فأوجد $\gamma = \gamma$	٧

أ. آلاء البرعي

أ. آلاء الجزار

أ. بلال أبو غلوة

أ. سليم السيقلي

القسم الرابع: اسئلة تفوق

الملتقى التربوي

www.wepal.net

الجواب	أجب عن الأسئلة الاتية	#
$\begin{bmatrix} 1 - & \frac{\circ -}{7} \\ \frac{9 - & \frac{7}{7}}{7} \end{bmatrix} = \omega$	حل المعادلة المصفوفية التالية $\Upsilon + \Upsilon + \Psi = 1 + \psi$	•
5 5	إذا كان أ $_{7\times7}$ ، $_{7\times7}$ ، $_{7\times7}$ أي العمليات التالية يمكن إجرائها أ $_{7\times7}$ ب $_{7\times7}$ و) $_{7\times7}$ ب $_{7\times7}$ ب $_{7\times7}$ و) $_{7\times7}$ ب $_{7\times7}$ ب $_{7\times7}$ و) $_{7\times7}$ ب $_{7\times7}$ ب $_{7\times7}$ و	*
	اذا کان $l=\begin{bmatrix} w^{1} & w^{0} \\ w^{0} & w^{1} \end{bmatrix}$ ، w ، $w \in 3$ اثبت أن $1 = 1$ هيٺ $w^{1} + w^{2} = 1$ $1 = 1$ هيٺ $w^{2} + w^{2} = 1$ $1 = 1$ هيٺ $w = 1$	٣

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

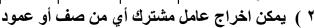
أ. سليم السيقلي

الوحدة الثالثة / حساب المصغوفات والمحددات

الدرس الثالث المحددات

القسم الأول: الملخص

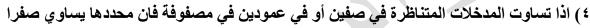
محدد المصفوفة : ربط المصفوفة بعدد حقيقى


(1) I i l S i i
$$f = \begin{bmatrix} f_{1/1} \\ f_{1/2} \\ f_{1/2} \end{bmatrix}$$
 is in a case f expand the filtration f and f is f and f are f and f and f and f are f and f and f and f are f and f and f are f and f and f are f and f are f and f and f are f are f and f are f are f and f are f and f are f and f are f a

اذا كانت المصفوفة مربعة من الرتبة الثالثة ، فانه يمكن ايجاد الله مدخلات أي صف أو عمود وذلك بضربها بالمحدد الناتج من تصور شطب الصف ي والعمود ه واعطاء اشارة لحاصل الضرب وفق القاعدة (-) وفق القاعدة

الملتقى التربوي www.wepal.net

١) عند تبديل صف مكان صف أو عمود مكان عمود آخر فان قيمة المحدد تضرب بـــ (- ١)


$$\begin{vmatrix} \xi & \Upsilon - \\ \xi & 1 \end{vmatrix}$$
 $(1-) = \begin{vmatrix} \Upsilon - & \xi \\ 1 & \xi \end{vmatrix}$ مثال:

مثال:
$$\begin{vmatrix} 7 - 0 \\ 1 - 1 \end{vmatrix} = \begin{bmatrix} 7 - 0 \\ 1 - 1 \end{vmatrix}$$
 (اخراج 7 عامل مشترك من الصف الثاني)

٣) اذا أضيف لمدخلات أي صف أو أي عمود مضاعفات نظائرها في صف آخر أو عمود آخر فلا تتغير قيمة المحدد

$$10 = \begin{vmatrix} 10 \times 7 + 7 & 0 \times 7 + 7 \\ 10 & 0 \end{vmatrix}$$
 د $10 = \begin{vmatrix} 7 & 7 \\ 10 & 0 \end{vmatrix}$ عثال:

$$\mathbf{r} = \begin{vmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{q} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} & \mathbf{r} & \mathbf{r} \end{vmatrix}$$

٥) اذا كانت المصفوفة مصفوفة مثلثية علوية فان محددها يساوي حاصل ضرب المدخلات على القطر الرئيسي

$$egin{align*} egin{align*} & egin{align*}$$

٦) اذا كان مدخلات أي صف أو عمود كلها اصفارا فان قيمة المحدد تساوي صفرا

قواعد هامة:

د) اذا كانت ا مصفوفة مربعة من الرتبة ن عفان الها = ك |1| ، حيث ك \in ك

$$|+| imes |+| = |+|$$
 اذا كانت $|+| imes |+| imes |+$

القسم الثاني: حلول تمارين الكتاب

السؤال الأول: جد قيمة كل من المحددات الآتية:

$$\begin{vmatrix} \circ & 7 \\ w & \xi - \end{vmatrix} Y + \begin{vmatrix} 1 & 7 \\ Y & \xi - \end{vmatrix} W - \begin{vmatrix} 1 & \circ \\ Y & w \end{vmatrix} \xi - = \begin{vmatrix} + & - & + \\ 1 & \circ & 7 \\ Y & w & \xi - \end{vmatrix}$$

$$(\circ \times \xi - -7 \times 7) + (1 \times \xi - -7 \times 7) + (1 \times 7 - 7 \times 9) = -2 \times 7 + 2 \times 7 + 2 \times 7 + 2 \times 9 = -2 \times 7 + 2 \times 7 + 2 \times 7 + 2 \times 7 = -2 \times 7 + 2 \times 7 = -2 \times 7 + 2 \times 7 = -2 \times 7$$

$$T = 17 - 17 = 5 - 20 = 7 - 17 = 7$$
 الحل $A = 17 - 17 = 7$

م مصفوفة وحدة مربعة من الرتبة الثالثة (استخدام قاعدة ال ا = ك الا)

$$\begin{vmatrix} 1 - w \\ 1 \end{vmatrix} = \begin{vmatrix} w & 1 - v \\ 0 & w & \xi \end{vmatrix}$$
 المعادلة الآتية: $\begin{vmatrix} x & y & 0 \\ 0 & w & \zeta \\ 0 & 0 & 0 \end{vmatrix}$

$$\begin{vmatrix} 1- & w \\ w & 1- & 7 \\ w & 1 \end{vmatrix} = \begin{vmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & w & 5 \\ w & 7 & 1 \end{vmatrix}$$

 $^{\mathsf{Y}}(\omega \times \mathsf{Y} - \circ \times \mathsf{I}) + ((\circ \times \mathsf{Y} - \mathsf{Y} \times \xi)) + ((\circ \times \mathsf{I} - \mathsf{Y} \times \xi)) = \omega^{\mathsf{Y}}$

$$1 + {}^{Y}\omega = (\omega - Y \xi)Y + (\circ - Y)I + (Y \cdot - \omega Y)Y$$

$$1 + {}^{7}\omega = \omega - 7 + 7 + 0 - 17 + 7 = \omega - 7$$
 $- 1 + 7 + 0 - 17 + 7 = \omega - 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 - 17 + 7 = 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 7 + 0 + 0$
 $- 1 + 0 + 0$
 $- 1 + 0 + 0$
 $- 1 + 0 + 0$
 $- 1 + 0 + 0$
 $- 1 + 0 + 0$
 $- 1 + 0 + 0$
 $- 1 +$

$$\Upsilon-=\omega$$
 6 $\Upsilon=\omega$ \longleftarrow $\bullet=(\Upsilon+\omega)(\Upsilon-\omega)$

فما قيمة | ١٢ | + |٥ب

اعداد

$$\boxed{|\gamma| = |\beta|} \iff 0 : \xi = |\beta| = 0 \iff 0 : \xi = |\beta|$$

أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي أ. سليم السيقلي

السؤال الرابع: إذا كانت
$$l=\begin{bmatrix} w & Y \\ w & Y \end{bmatrix}$$
 ، وكان ${r\choose l}=0$ ، نما قيمة/ قيم س؟

$$|1^{7}| = 0 \ 1 \ |1.$$

$$| \circ = | \downarrow |$$
 $| \leftarrow$

لسؤال الخامس: إذا علمت أن معادلة المستقيم في المستوى والمار بالنقطتين (سممس) (سممس) تعطى

فاستخدم القاعدة في إيجاد معادلة المستقيم المار بالنقطتين (٢٥٣) ٥ (٧٥٥)

$$(\mathsf{V} \circ \mathsf{O}) = (\mathsf{V} \circ \mathsf{O}) \circ (\mathsf{V} \circ \mathsf{O}) = (\mathsf{V} \circ \mathsf{O}) \circ (\mathsf{V} \circ \mathsf{O}) = (\mathsf{V} \circ \mathsf{O}) \circ (\mathsf{V} \circ \mathsf{O}$$

$$\begin{vmatrix} + & - & + \\ 1 & - & + \\ - & + & - \\ 1 & 7 & 7 \\ - & + & - \\ + & - & + \\ 1 & 7 & 0 \end{vmatrix} \leftarrow$$

$$\bullet = (\mathsf{V} \mathsf{W} - \mathsf{V} \mathsf{W}) + (\mathsf{V} \mathsf{W} - \mathsf{V} \mathsf{W}) = \mathsf{V} \mathsf{W}$$

$$\rightarrow 11 - 700 + 700 - 700 = 0$$

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمى-الفصل الاول $11 - \omega = \omega \wedge = \omega + \omega = \omega \wedge \omega$ لسؤال السادس: اذكر خاصية/خصائص المحددات التي استخدمت في كل من المتساويات الآتية: $\frac{\mathbf{i}}{\mathbf{i}}$ فرع ا: بضرب الصف الأول في - ٢ ثم جمعه مع الصف الثاني إخراج ٣ عامل مشترك من العمود الثاني ومن تساوي العمود الأول والعمود الثاني فان المحدد يساوي صفر $\begin{vmatrix} \mathbf{v} & \mathbf{v} \\ \mathbf{q} & \mathbf{v} \end{vmatrix} = \begin{vmatrix} \mathbf{v} & \mathbf{v} \\ \mathbf{v} & \mathbf{q} \end{vmatrix}$ فرع جد: الحل تبديل العمود الأول والعمود الثاني لسؤال السابع: باستخدام خصائص المحددات أثبت ما يلى: $\frac{\mathbf{i}(3)}{\mathbf{i}} : \begin{vmatrix} \mathbf{i} & \mathbf{i} & \mathbf{j} & \mathbf{j} \\ \mathbf{i} & \mathbf{j} & \mathbf{j} & \mathbf{j} \\ \mathbf{j} \mathbf{j} & \mathbf{j} \\ \mathbf{j} & \mathbf{j} & \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} \\ \mathbf{j} & \mathbf{j} \\

$$\begin{vmatrix} 1 + y + z + z \\ 1 \end{vmatrix}$$
 بأخذ $(1 + y + z + z)$ عامل مشترك من العمود الأول $|1 + y + z + z|$

$$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$$
 تساوي العمود الأول مع العمود الثاني فان قيمة المحدد يساوي صفر $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$

$$\frac{\dot{\epsilon}(3\, \mu)}{\dot{\epsilon}(3\, \mu)} : -3 \quad \phi = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix} = -1 \quad \phi = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{vmatrix}$$

$$\forall \cdot \cdot - = 1 \cdot \times \xi - \times \circ =$$

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

أ. سليم السيقلي

القسم الثالث: اسئلة اثرائية

المحـــدات

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
د	$= \mathcal{V} $ فان $ \mathcal{V} = \mathcal{V} $	•
1	اذا علمت أن $ 1 \times \psi = -7$ وكان $ -7 \psi = -3$ ، $ 1 \times \psi = -4$ مصفوفتان من الرتبة الثانية فان $ 1 = \psi = -4$ فان $ 1 = \psi = -4$ فان $ 1 \times \psi = -4$ ب $ 1 \times \psi = -4$ ب $ 1 \times \psi = -4$ ب $ 1 \times \psi = -4$ با $ 1 \times \psi = $	*
4	اذا کان $egin{array}{c c} w & Y & & & & & & & & & & & & & & & & &$	٢
3	اذا كانت $ $	ŧ
ج	اذا كانت † مصفوفة من الرتبة $~7 imes 7$ وكانت $ 1 =-7$ فان $ 21 =$ $)$	٥
ب	اذا کان $^{\dagger}=\begin{bmatrix} \gamma & \gamma \\ w & \gamma \end{bmatrix}$ $^{\dagger}=\uparrow \uparrow $	٦
ج	$= \omega + \omega =$ فان $ \omega + \omega =$ اف $=$ اف	V

أ. آلاء البرعي

1 7 7

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

اذا كانت ص مصفوفة من الرتبة m imes m وكان |m| = o و وقمنا بابدال الصفين الأول والثالث ثم أبدلنا الثاني والثالث فان قيمة المحدد الجديد = ر) ، (خ ، (ز

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
$\frac{17}{1} = \omega$	$egin{array}{c c} \gamma & \varphi & \gamma & \varphi & $	•
-	$\cdot = \begin{vmatrix} \gamma & 0 & \gamma \\ \gamma & \gamma & \gamma \end{vmatrix}$ دون حساب قیمة المحدد أثبت أن $\gamma = \gamma + \gamma + \gamma = \gamma$	۲
۲ ٤	$ $ اذا کانت $ =\begin{bmatrix} \chi & 1 \\ \chi & -1 \end{bmatrix}$ ، ن $=\begin{bmatrix} \chi & 1 \\ 1 & \chi \end{bmatrix}$ جد $ \chi \times \psi $	٣
س = ځ ، س = ۲	$\mathbf{Y} = egin{vmatrix} \mathbf{v} & \mathbf{v} $	٤
الحل: ضرب الصف الأول في - لا ثم جمع مع الصف الثاني الحل: ١) عامل مشترك - ٣ من العمود الثاني ٢) تساوي العمود الأول والثاني	اكتب خاصية / الخصائص المحددات المستخدمة في كل من :	٥
ريد ي	\4 · V \	

د

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

	النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي-الفصل الاول	سلسلة
_		٦,
	$(\mathbf{v} - \mathbf{z}) (\mathbf{r} - \mathbf{z}) (\mathbf{r} - \mathbf{r}) (\mathbf{z} - \mathbf{r}) (\mathbf{z} - \mathbf{r})$	
١٢.	اذا كانت $w = \begin{bmatrix} 2 & 5 & 6 \\ 1 & 4 & 7 \\ 1 & 4 & 7 \end{bmatrix}$ وكان $ w = 0$ ، فما قيمة $ w = 1$ وكان $ w = 1$ فما قيمة $ w = 1$ وكان $ w = 1$ و	Y

1 7 9

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
$\left[\frac{1}{1},\infty-\right[$	$egin{aligned} \cdot & > & > & > & > & > & > & > & > & > &$	•
	$egin{aligned} & & & & & & & & & & & & & & & & & & &$	۲
$\frac{\pi^{\circ}}{17} \cdot \frac{\pi}{17} = \omega$	$[\pi \circ]$ هاس د $\frac{1}{7} = $ $\pi \circ $ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	٣

أ. آلاء البرعي

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

الوحدةالثالثة/حساب المصغوفات والمحدات

الدرس الرابع النظير الضربي للمصفوفة

القسم الأول: الملخص

النظير الضربي للمصفوفة المربعة:

اذا كانت المصفوفة مربعة من الرتبة ن عفان المصفوفة ب من الرتبة ن تسمي نظيرا ضربيا للمصفوفة الذا كان البيادة من الرتبة ن المحايدة من المحا

(يرمز النظير الضربي للمصفوفة 1 بالرمز 1 أي ان $\mathbf{v}=^1$ ويكون 1 $^1=^1=^1$

المصفوفة المنفردة: هي المصفوفة المربعة التي ليس لها نظير ضربي

المصفوفة الغير منفردة: هي المصفوفة المربعة التي لها نظير ضربي

نظرية : تكون المصفوفة المصفوفة منفردة اذا وفقط اذا كان |1|=1

خصائص النظير الضربى: اذا كانت اى ب مصفوفتين مربعتين ، وغير منفردتين ، ومن نفس الرتبة ، وكانت ك عددا حقيقيا خر ، فان :

$$\mathfrak{f} = \mathbf{f} - (\mathbf{f} - \mathbf{f})$$

$$^{\prime -}$$
 (۱) $\frac{1}{2}$ = $^{\prime -}$ (۱۵) (ب

تعميم : (ايجاد النظير الضربي للمصفوفة المربعة من الرتبة الثانية)

$$\begin{bmatrix} \gamma_1 & \gamma_1 \\ \gamma_1 & \gamma_1 \end{bmatrix}$$
مصفوفة غير منفردة فان $1^{-l} = \frac{1}{|l|} \begin{bmatrix} \gamma_1 & \gamma_1 \\ -\gamma_1 & \gamma_1 \end{bmatrix}$ اذا كانت $1 = \begin{bmatrix} \gamma_1 & \gamma_1 \\ -\gamma_1 & \gamma_1 \end{bmatrix}$

أي أن الم^ا تنتج من ضرب المصفوفة البمقلوب محددها بعد تبديل مدخلات القطر الرئيسي وتغيير اشارة مدخلات القطر الأخر من المصفوفة ا

DON'T GIVE UP

القسم الثاني: حلول تمارين الكتاب

وال الأول: بين أى من المصفوفات الآتية لها نظير ضربى:

فرع أ:
$$l = \begin{bmatrix} 3 & -\Lambda \\ 7 & \Psi \end{bmatrix} = l$$
فرع أ: $l = \begin{bmatrix} 1 & -\Lambda \\ -\Lambda & 1 \end{bmatrix} = l$ فرع أ: $l = \begin{bmatrix} 1 & -\Lambda \\ -\Lambda & 1 \end{bmatrix} = l$ فرع أ: $l = \begin{bmatrix} 1 & -\Lambda \\ -\Lambda & 1 \end{bmatrix} = l$ فرع أ: $l = \begin{bmatrix} 1 & -\Lambda \\ -\Lambda & 1 \end{bmatrix} = l$ فرع أ: $l = \begin{bmatrix} 1 & -\Lambda \\ -\Lambda & 1 \end{bmatrix} = l$ فرع أ: $l = \begin{bmatrix} 1 & -\Lambda \\ -\Lambda & 1 \end{bmatrix} = l$

$$1-1=$$
 $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$ $|-1|=$

$$|c|=|c|$$
 $|c|=|c|$ $|c|=|c|$

لسؤال الثاني: ما قيم ك التي تجعل كلا من المصفوفات الآتية منفردة؟

$$\cdot = \exists \xi - \zeta \exists \zeta = \xi \times \exists - \exists \zeta = \xi \times \exists \zeta =$$

$$\boxed{\Upsilon = \omega \cdot \cdot = \omega} \Longleftrightarrow \cdot = (\xi - \omega \Upsilon) \omega \Longleftrightarrow$$

$$\begin{bmatrix} \xi & \omega \\ \omega & 1 \end{bmatrix} = \psi \underline{\qquad}$$
فرع ب: ψ

$$[Y-=0]$$
، $[Y=0]$ $(= \xi = Y 0 + Y$

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

أ. سليم السيقلي

السؤال الثالث : إذا كانت
$$l=1$$
 ، فجد السؤال الثالث الثال

فرع أ: ١-١ (إن أمكن)

$$T=1$$
 الحل $|A|=|A|$ $|A|=|A|$ $|A|=|A|$ $|A|=|A|$

$$\begin{bmatrix} \frac{\circ}{7} & \frac{\tau}{7} \\ \frac{\tau}{7} & \frac{1}{7} \end{bmatrix} = \frac{1}{7} \Leftrightarrow \begin{bmatrix} \frac{\circ}{7} & \frac{\tau}{7} \\ \frac{\varepsilon}{7} & \frac{\tau}{7} \end{bmatrix} = \frac{1}{7} \Rightarrow \frac{1}{7$$

فرع ب: (١-١) (ماذا تلاحظ)

نلاحظ أن
$$(^{1-})^{-1} = ^{1}$$
 (باستخدام خصائص النظير الضربي)

لسوال الرابع: إذا كانت
$$f=\begin{bmatrix} w & o \\ \gamma & d \end{bmatrix}$$
، وكان $|f^{-1}|=\frac{1}{o}$ ، فما قيمة س؟

$$1 \cdot - \omega \Upsilon = \Upsilon \times \omega - o \times \Upsilon = |\uparrow|$$

$$0=m\Longleftrightarrow 1$$
 ، بالضرب التبادلي ينتج $0=m\longleftrightarrow 1$ ، بالضرب التبادلي ينتج $0=m\longleftrightarrow 1$ ، بالضرب التبادلي ينتج

السؤال الخامس : إذا كانت
$$=\begin{bmatrix} w & -w \\ 1 \end{bmatrix}$$
 ، وكان $\begin{vmatrix} 1 & 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ فما قيمة/قيم المقدار (س. ص)؟

$$1 \pm |\mathbf{l}| \iff 1 = \mathbf{l} + \mathbf{l}$$

$$|\gamma|=1$$
 اومنها س $\gamma=-1$

$$=-1$$
 ومنها س $\omega + \gamma = -1$ او $|\gamma| = -1$

$$\begin{bmatrix} \gamma & \gamma \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma \\ \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ \gamma$$

الحل
$$\cdot \cdot = -$$
 (نضرب بالنظير الضربي للمصفوفة المن جهة اليمين)

$$-\cdot$$
 الضرب في ا $^{-1}$ من جهة اليمين : ا $^{-1}$ ب \rightarrow بالضرب في ا $^{-1}$ من جهة اليمين : ا $^{-1}$ ب \rightarrow بالضرب في ا $^{-1}$ من جهة اليمين : ا

$$\begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{2} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{2} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{2} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \cancel{R} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{0} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\
\frac{1}{7} & \frac{1}{7}
\end{bmatrix} = \begin{bmatrix}\frac{1}{1} & \frac{1}{7} \\$$

السؤال السابع: إذا كانت أمصفوفة مربعة من الرتبة الثانية وغير منفردة، وكان ك عددا حقيقيا لا يساوي صفرا فأثبت أن: (كأ) $\frac{1}{1} = \frac{1}{10}$

السؤال الثامن: إذا كانت أ،ب مصفوفتين مربعتين وكانت أ مصفوفة غير منفردة بحيث أ. ب = أ. جـ فأثبت أن ب = جـ

الحل

· · أ مصفوفة غير منفردة . . يوجد نظير ضربي للمصفوفة أ

$$heta heta he$$

القسم الثالث: اسئلة اثرائية

النظير الضربي للمصفوفة المربعة

الجواب	القسم الأول: اختر الاجابة الصحيحة	#
Ļ	اذا كانت المصفوفة $\begin{bmatrix} w & Y \\ w & \end{bmatrix}$ منفردة فان $w = \frac{1}{2}$	1
	 أ) ٢ (ب) ٢ ، -٢ ج) ٤ د) ٤ ، -٤ اذا كانت أ و ب مصفوفتان مربعتان غير منفردتان ، فان احدى العبارات الاتية صحيحة : 	۲
د	$ 1+\psi = 1 + \psi \qquad (4\psi)^{-1} = 1^{-1}\psi^{-1} \qquad 1 \times \psi = \psi \times 1 \qquad 4\psi = 1 \psi $ $(4\psi)^{-1} = 1^{-1}\psi^{-1} \qquad (4\psi)^{-1} = 1^{-1} \psi = 1^{-1} $	'
	$= rac{1-\gamma}{4}$ ، فان $rac{1-\gamma}{4}$ ، فان $rac{1-\gamma}{4}$	٣
د	$\begin{bmatrix} \frac{1}{7} & \frac{1}{\xi} \\ \frac{1}{7} & \frac{1}{7} \end{bmatrix}_{(2)} \begin{bmatrix} \mathbf{r} & \mathbf{r} - \mathbf{r} \\ \mathbf{r} - \frac{\mathbf{r}}{7} \end{bmatrix}_{(2)} \begin{bmatrix} \mathbf{r} & \mathbf{r} - \mathbf{r} \\ \mathbf{r} - \frac{\mathbf{r}}{7} \end{bmatrix}_{(3)} \begin{bmatrix} \mathbf{r} & \mathbf{r} - \mathbf{r} \\ \mathbf{r} - \mathbf{r} - \mathbf{r} \end{bmatrix}_{(4)}$	
<u>ح</u>	المصفوفة المنفردة من بين المصفوفات التالية هي : $ \begin{bmatrix} \Upsilon & 1 \\ \Upsilon & 0 \end{bmatrix} \begin{bmatrix} \Upsilon & 1 \\ \Upsilon & 1 \end{bmatrix} \begin{bmatrix} \Upsilon & 1 \\ \Upsilon & 1 \end{bmatrix}_{(1)} $	٤
و ،	$=$ قيم س التي تجعل المصفوفة $egin{bmatrix} (w-1) & \gamma & $	٥
);	{1-c1·}(2 {1c1·}(E {T-c0}(
	مصفوفة من الرتبة م ×ن ، احدى العبارات الأتية صحيحة دائما:	٦
د	 أ) للمصفوفة أ نظير ضربي ب) يمكن إيجاد المصفوفة أ×أ ج) يمكن تنفيذ العملية : ٤+أ د) للمصفوفة أ نظير جمعى 	
	<u> </u>	

115

	سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمي	
	المصفوفة التي لها نظير ضربي من بين المصفوفات الاتية هي:	٧
Í	$\begin{bmatrix} \chi & \chi \\ \xi & \xi \end{bmatrix} (7 \begin{bmatrix} \chi & \chi \\ \chi & \chi \end{bmatrix}) (9 \begin{bmatrix} \chi & \xi \\ \chi & \xi \end{bmatrix}) (1 \begin{bmatrix} \chi & \chi \\ \chi & \chi \end{bmatrix}) (1 \begin{bmatrix} \chi & \chi \\ \chi & \chi \end{bmatrix}) (1 \begin{bmatrix} \chi & \chi \\ \chi & \chi \end{bmatrix}) (2 \begin{bmatrix} \chi & \chi \\ \chi & \chi \end{bmatrix}) (3 \begin{bmatrix} \chi & \chi \\ \chi & \chi \end{bmatrix}) (4$	
	اذا كانت أ مصفوفة تنائية ، وكان $^{-1}$ هو النظير للمصفوفة أ ، فان $^{-1}$ =	٨
ج		

الجواب	القسم الثاني: أجب عن الأسئلة الاتية	#
۲م	اً ، ب مصفوفتان غیر منفردتان و کان ب $\Upsilon= \Upsilon^{1-1}$ ، أوجد أ . ب	1
س = ۲ع ⁻	$\begin{bmatrix} 1 & 1 \\ \xi & \gamma \end{bmatrix} = \xi \cdot \begin{bmatrix} \gamma & \gamma \\ 1 & \cdot \end{bmatrix} = 0$ اذا کانت $m = 1$ ξ $\gamma = 0$ $\gamma = 1$	*
[,-]	اذا کانت $\hat{l} = \begin{bmatrix} 1 & -\xi & -\xi & \xi &$	7
$\begin{bmatrix} \frac{7}{7} & \frac{7}{7} \\ \frac{\xi}{7} & \frac{7}{7} \end{bmatrix}$	$^{\prime -}$ (۱۲) نو کانت $^{\dagger} = \begin{bmatrix} \gamma & \gamma \\ - \gamma & 1 \end{bmatrix}$ ، جد	٤
[7	اذا كان ب $^{-1}=\begin{bmatrix} \gamma & \gamma \\ -2 & \gamma \end{bmatrix}$ ، وكان ب \times أ $_{-}$ $\begin{bmatrix} \gamma & \gamma \\ \gamma & \gamma \end{bmatrix}=$ و ، جد المصفوفة أ .	٥
$\begin{bmatrix} \frac{1}{1} & \frac{\xi}{1} \\ \frac{\zeta}{1} & \frac{\xi}{1} \end{bmatrix}$	$^{\prime -}$ اذا کانت أ $=$ $\begin{bmatrix} \gamma & \gamma \\ \gamma & \gamma \end{bmatrix}$ ، ب $=$ $\begin{bmatrix} \gamma & \gamma \\ \gamma & \delta \end{bmatrix}$ ، فأوجد $(\gamma \times \gamma)^{-1}$.	4

110

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار أ. آلاء البرعي

ىلمى	سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع الع	
	اذا کانت أ $=$ $\begin{bmatrix} \gamma & \delta \\ \gamma & \gamma \end{bmatrix}$ ، وکان $\gamma^{-1} \times \begin{bmatrix} \zeta & \gamma \\ \gamma & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \delta \\ \gamma & \gamma \end{bmatrix}$ فما قیمة $\begin{bmatrix} \omega & \omega \\ \zeta & \zeta \end{bmatrix}$?	٧
[~ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	اذا كانت أ $=$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، ب $=$ $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ ، أوجد س التي تحقق المعادلة : $-1 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = $	٨
	اذا کانت $l=\begin{bmatrix} 5 & -7 \\ 0 & -5 \end{bmatrix}$ ، $v=\begin{bmatrix} -7 & 1 \\ 5 & -1 \end{bmatrix}$ ، أوجد :	٩

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
س = -7	جد قيمة الثوابت س ، ص ، ع ، ل ، اذا كان :	,
ص = ۶ ۱	$\begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 6 & 4 \\ 1 & 1 \end{bmatrix}$	
€ − = 0	[-1 7][7b+0 3 ⁷ +1] [-7 m]	
Υ ± = ε		
$\begin{bmatrix} \cdot & 1 - \\ 1 - & \cdot \end{bmatrix} = \omega$	إذا كانت س مصفوفة مربعة من الرتبة الثانية بحيث $m=m^{-1}$ ، حل المعادلة المصفوفية $m=m^{-1}+m=n$	۲
$\begin{bmatrix} \lambda & \lambda - \end{bmatrix} \frac{\lambda}{\lambda - 1} = \lambda$	اِذَا کان $l = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ $l = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ ، جد ب	٣

أ. آلاء البرعي

۱۸۲

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

الوحدة الثالثة/حساب المصغوفات والمحددات

الدرس الخامس حل أنظمة المعادلات باستخدام المصفوفات

القسم الأول: الملخص

من التطبيقات المهمة للمصفوفات استخدامها في حل أنظمة المعادلات الخطية ، ويمكن اجراء ذلك بعدة طرق منها :

١) طريقة النظير الضربى:

ردا کان لدینا النظام $\int_{Y_1} m + \int_{Y_1} m = -$

فاننا نكتب النظام على صورة معادلة مصفوفية كالتالي:

$$\begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix} \begin{bmatrix} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \end{bmatrix}$$

أي على صورة اع =ج ، حيث المصفوفة المعاملات ،ع مصفوفة المتغيرات ،ج مصفوفة الثوابت

فاذا كانت المصفوفة غير منفردة فان المما موجود ، وبضرب طرفي المعادلة من اليمين في المما وينتج = 1 - 1 - 1 ومنها نجد حل النظام

ملاحظة : في النظام اع =ج ، اذا كانت المصفوفة منفردة فلا يمكم استخدام طريقة النظير الضربي وفي هذه الحالة اما ان يكون للنظام عدد لا نهائى من الحلول او ليس له حل .

٢) طريقة كريمر:

$$\frac{\left|\frac{|m|}{|m|}}{|m|} = \omega = \frac{\left|\frac{|m|}{|m|}}{|m|} = \omega$$

حيث السي هو محدد مصفوفة المعاملات بعد استبدال العمود الأول بعمود مصفوفة الثوابت

الس العمود الثاني بعمود مصفوفة المعاملات بعد استبدال العمود الثاني بعمود مصفوفة الثوابت

٣) طريقة جاوس:

اذا کان لدینا النظام
$$1, 1, 1, 1, 2 + 1, 3$$
 اذا کان لدینا النظام

لحل النظام نجري بعض العمليات الآتية على صفوف ألنحصل على مصفوفة مثلثية علوية

ومن هذه العمليات:

- ١) تبديل صف مكان صف آخر
- ٢) ضرب مدخلات أي صف بعدد لا يساوي صفرا
- ٣) ضرب مدخلات أي صف بعدد لا يساوي صفرا واضافتها الى صف آخر
- ثم نجد قيمة المتغير ع ثم بالتعويض العكسى نجد قيمة المتغير ص ، ثم المتغير س .

ملاحظة : اذا كانت $_{1,1}^{\dagger}=\cdot$ فيمكن تبديل صف مدخلته الأولى $eq \cdot$ مكان الصف الأول في المصفوفة الممتدة آ

عندما يراهنون على فشلك وتنجح ، يكون طعم الانتصار الذ

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

أ. سليم السيقلي

القسم الثائي: حلول تمارين الكتاب

السؤال الأول: حل كلا من الأنظمة الآتية باستخدام طريقة النظير الضربي:

$$w-\omega=\gamma$$
فرع أ: $w-\omega=\gamma$

$$\begin{bmatrix} \Upsilon \\ \Upsilon \end{bmatrix} = \begin{bmatrix} \omega \\ \omega \end{bmatrix} \begin{bmatrix} 1 - 1 \\ 1 \end{bmatrix} \Leftarrow$$

$$T = T - 1 = T \times 1 - 1 \times 1 = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = |Y|$$

$$\begin{bmatrix} \frac{1}{\mu} & \frac{1}{\mu} \\ \frac{1}{\mu} & \frac{1}{\mu} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \frac{1}{\mu} = \frac{1}{\mu} + \frac{1}{\mu}$$

$$\boxed{\cdot} = \omega$$
 \leftarrow $\boxed{\Upsilon} = \omega$ \therefore

$$\begin{bmatrix} \mathbf{w} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \\ \mathbf{v} \end{bmatrix} \begin{bmatrix} \frac{1}{\mathbf{w}} & \frac{1}{\mathbf{w}} \\ \frac{1}{\mathbf{w}} & \frac{\mathbf{v} - \mathbf{v}}{\mathbf{w}} \end{bmatrix} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix}$$

$\Upsilon = \omega + \omega = \Upsilon + \omega = \gamma$ فرع ب: $\omega + \omega = \gamma$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
بفرض أن $= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

$$|\mathbf{q} - \mathbf{q} -$$

$$\begin{bmatrix} \frac{1}{q} & \frac{1}{q} \\ \frac{1}{q} & \frac{1}{q} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 & - \end{bmatrix} \frac{1}{q} = \frac{1}{q} = \frac{1}{q} \iff$$

$$\boxed{1} = \omega \quad \epsilon \quad \boxed{1} = \omega : \qquad \boxed{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} \frac{1}{q} & \frac{1-1}{q} \\ \frac{1-1}{q} & \frac{1-1}{q} \end{bmatrix} = \begin{bmatrix} \omega \\ \omega \end{bmatrix}$$

موال الثاني: حل أنظمة المعادلات الآتية باستخدام طريقة كريمر:

$$w - \omega = 0$$

فرع أ: $w + 7 \omega = 0$

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad , \quad \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad , \quad \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$abla = |\dot{r}| \iff r = 1 - - r = 1 - \times 1 - r \times 1 = \begin{vmatrix} 1 & 1 \\ r & 1 \end{vmatrix} = |\dot{r}|$$

$$|\mathbf{f}_{\mathbf{w}}| = |\mathbf{g}_{\mathbf{w}}| \iff |\mathbf{f}_{\mathbf{w}}| = |\mathbf{f}_{\mathbf{w}}| = |\mathbf{f}_{\mathbf{w}}| = |\mathbf{f}_{\mathbf{w}}|$$

$$|\mathbf{r}_{-}| = |\mathbf{r}_{+}| \iff \mathbf{r}_{-} = \mathbf{r}_{-} = \mathbf{r}_{-} = \mathbf{r}_{-} = |\mathbf{r}_{+}| = |\mathbf{r}_{+}|$$

$$\boxed{1-} = \frac{\mathsf{Y}-}{\mathsf{Y}} = \frac{\left|\frac{\mathsf{J}-\mathsf{J}}{\mathsf{J}}\right|}{\left|\mathsf{J}\right|} = \omega \qquad \mathsf{c} \qquad \boxed{\underline{\mathbf{E}}} = \frac{\mathsf{J}\cdot\mathsf{Y}}{\mathsf{Y}} = \frac{\left|\frac{\mathsf{J}-\mathsf{J}}{\mathsf{J}}\right|}{\left|\mathsf{J}\right|} = \omega \quad \mathbf{.}$$

$w + \omega = -\infty$ <u>فرع ب:</u> $v + \omega = -\infty$

$$\begin{bmatrix} \mathbf{r} - \mathbf{r} \\ \mathbf{r} - \mathbf{r} \end{bmatrix} = \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} = \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix} \begin{bmatrix} \mathbf{r} \\ \mathbf$$

$$\begin{bmatrix} \mathbf{Y} - \\ \mathbf{Y} - \end{bmatrix} = \begin{bmatrix} \mathbf{w} \\ \mathbf{w} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{Y} \end{bmatrix}$$

$$1 = 1 - 7 = 1 \times 1 - 7 \times 1 = \begin{vmatrix} 1 & 1 \\ 7 & 1 \end{vmatrix} = |\hat{r}|$$

$$|\mathbf{f}_{-\mathbf{y}}| = \mathbf{y} - \mathbf{y}$$

$$1 = \Upsilon - - \Upsilon - = \Upsilon - \times 1 - \Upsilon - \times 1 = \begin{vmatrix} \Upsilon - & 1 \\ \Upsilon - & 1 \end{vmatrix} = \begin{vmatrix} \zeta - & 1 \end{vmatrix}$$

$$\boxed{1} = \frac{1}{1} = \frac{\left|\frac{1}{\omega}\right|}{\left|\frac{1}{2}\right|} = \omega \qquad \omega = \frac{\left|\frac{1}{2}\right|}{\left|\frac{1}{2}\right|} = \frac{\left|\frac{1}{2}\right|}{\left|\frac{1}{2}\right|} = \omega \qquad \omega = \frac{\left|\frac{1}{2}\right|}{\left|\frac{1}{2}\right|} = \frac{\left|\frac{1}{2}\right|}{\left|\frac{1}{2}\right|} = \omega \qquad \omega = \frac{\left|\frac{1}{2}\right|}{\left|\frac{1}{2}\right|} = \frac{\left|\frac{1}{2}\right|}{\left|\frac{1}$$

سلسلة النخبة التعليمية في مبحث الرياضيات الصف الثاني عشر للفرع العلمى وجد أن: عند حل نظام مكون من معادلتين خطيتين بالمتغيرين س، ص بطريقة كريمر، وجد أن:

$$\begin{bmatrix} \gamma & -\gamma \\ 1 & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & -\gamma \\ 1 & \gamma \end{bmatrix}$$
، فجد قيمة س ، ص $\begin{bmatrix} \gamma & \gamma \\ 1 & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ 1 & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ 1 & \gamma \end{bmatrix}$ مصفوفة المعاملات ، مصفوفة الثوابت $\begin{bmatrix} \gamma & \gamma \\ 1 & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ 1 & \gamma \end{bmatrix}$

$$|\mathbf{f}_{-}| = \mathbf{q} - \mathbf{o} = \mathbf{m} - \mathbf{m} - \mathbf{m} = \mathbf{o} + \mathbf{m} - \mathbf{m} = \mathbf{o} + \mathbf{m} = \mathbf$$

$$\boxed{1 = \frac{1 - 1}{1 - 1} = \frac{\left| \frac{1}{|x|} \right|}{|x|} = \omega} \qquad \alpha \qquad \boxed{\xi} = \frac{\xi - 1}{1 - 1} = \frac{\left| \frac{1}{|x|} \right|}{|x|} = \omega$$

استخدم طريقة جاوس في حل الأنظمة الآتية:

$$\frac{\gamma - \omega - \omega}{6(3)!} = \frac{1}{\omega + \gamma}$$

(باستبدال الصفين)
$$\begin{bmatrix} 1 & -1 & 7 \\ 0 & 7 & 1 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$=$$
 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & -1 \end{bmatrix}$ (بضرب الصف الأول في -7 وأضافته للصف الثاني)

$$\begin{bmatrix} \circ & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \leftarrow \begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{bmatrix} \leftarrow$$

$$\Upsilon = 0$$
 بالتعويض بقيمة $= 1$

$$1 = \omega \iff 0 = 1 \times 1 + \omega \iff 0 =$$

$$m-\omega+3=7$$
 الترتيب جاهز) $m+7\omega+3=7$ (الترتيب جاهز) $\gamma\omega+\omega-3=0$

$$\begin{array}{c} \boxed{\Upsilon=\xi} \Leftarrow 9-=\xi\Upsilon-\\ \boxed{V=-} \Leftrightarrow 7-=\xi\Upsilon-\\ \boxed{V=-} \Leftrightarrow 7-=\xi\Upsilon-$$

القسم الثالث: اسئلة اثرائية

حل أنظمة المعادلات باستخدام المصفوفات

الجواب	أجب عن الأسئلة الاتية	#
أ) س = ۸	حل النظام الآتي باستخدام طريقة النظير الضربي:	1
ص = ۳ ب) س = ۱	9 = m + 1 + m + m + m + m + m + m + m + m +	
ص = ٠	ب) س= ص + ۱ ، ۲ س + ص = ۲	
أ) س = ۳ ، ص =o	حل النظام الآتي باستخدام طريقة كرايمر : -	۲
	۱) ۲ س + ص = ۵ ، س + ۳ ص = ۰	
ب) س = ۲ ، ص = ۳	ب) ۲ س — ص = ۱ ، ۲ ص — ۳ س = ۰	
أ) س = ۲	حل النظام الآتي باستخدام طريقة جاوس : -	٣
ص = ٥	$V = \omega + \omega$, $V = \omega$ (i)	
$\frac{1}{m} = \omega$	ب) ۲ س – ص + ع = ۷ ، ۲ ص + ع = -۱ ، ص – ع +س =-٦	
$\frac{\gamma\gamma-}{q} = 0$ $\frac{\gamma\gamma-}{q} = 0$ $3 = \frac{\gamma\gamma-}{q}$		
	عند حل نظام من معادلتين خطيتين بمتغيرين بطريقة كريمر ، وجد أن :-	٤
٣	$ abla = -7$ $ f_{\omega} = 1$ $ f_{\omega} = -7$ $ f_{\omega} = 1$ $ f_{\omega} = 1$ $ f_{\omega} = 1$ $ f_{\omega} = 1$	

أ. آلاء البرعي

أ. بلال أبو غلوة أ. آلاء الجزار

أ. سليم السيقلي

القسم الرابع: اسئلة تفوق

الجواب	أجب عن الأسئلة الاتية	#
$ 1 = 7 \cdot 1_{\omega} = 3 \cdot 1_{\omega} = A$ $ 2 = 7 \cdot 1_{\omega} = A$	عند حل نظام من معادلتین خطیتین بطریقة کریمر وجد أن $ 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -$	•
٨-= ١ ١ ١ - ٢ ، ١ س = -٤ ، ١ س = -١		
س = -7 ص = ۳ ۱ = ٤	باستخدام طریقة جاوس حل نظام المعادلات التالیة $Y = 3 + 3$ $Y = Y + 23 + 7 = 3$ $Y = Y + 23 + 7 = 3$	۲
1=1 ، ب $=1$	عند حل نظام من معادلتین خطیتین بطریقة کریمر للنظام $1=-0=1$ $1=-1=1$ $1=-1=1=1$ جد قیمة الثوابت $1=-1=1=1=1=1$	٣

گر اساة الكاماء

الوحدة الثالثة/حساب المصغوفات والمحددات

تمارين عامة

السؤال الأول: اختر الاجابة الصحيحة فيما يأتى:

١.	٩	٨	٧	٦	٥	£	٣	4	1	الفرع
Í	L	J •	L	J •	Í	7	ج	÷	÷	الحل

فرع ۱: إذا كانت
$$l = \begin{bmatrix} 0 & 1 - \xi \\ q & w - \zeta \\ 1 & V & T \end{bmatrix}$$
 فما قيمة $l_{\gamma} - l_{\gamma}$ ؟

 $l_{\gamma}, -l_{\gamma\eta} = \Gamma - \circ = I \quad (\Leftarrow)$

فرع
$$\gamma$$
: إذا كانت $\begin{bmatrix} \gamma & \psi \\ 0 & \gamma \end{bmatrix} = \begin{bmatrix} \omega & \psi \\ \omega & + \psi & 0 \end{bmatrix}$ فما مجموعة قيم س؟

الحل س = ۲ (جـ)

$$-$$
 مرفوض $-$ مرفوض

فرع ٤ : إذا كانت أ، ب مصفوفتين مربعتين غير منفردتين، فما العبارة الصحيحة دائما فيما يأتي؟

فرع ٥: إذا كان س.ص = ص.س = م، فما العبارة الصحيحة دائما فيما يأتي؟

الحل (۱) س
$$^{-1}=$$
 ص (تعریف صفحة ۱۲۰)

فرع $\frac{1}{2}$ إذا كانت س مصفوفة بحيث س $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ فماذا يمكن أن تكون المصفوفة س؟

الحل
$$(ب)$$
 $\uparrow \times \uparrow = \uparrow$ خصائص عملية الضرب صفحة ١١٢ ، م: مصفوفة الوحدة

فرع ۷ : إذا كانت
$$f = \begin{bmatrix} \gamma & \gamma \\ 0 & \gamma \end{bmatrix}$$
 فما المصفوفة التي تساوي $f^{-1} + f$ ؟

$$1 = 9 - 1 \cdot = \begin{vmatrix} r & r \\ o & w \end{vmatrix} = |f| \Leftarrow \begin{bmatrix} r & r \\ o & w \end{bmatrix} = 1$$

فرع \wedge : إذا كانت أ، ب مصفوفتين مربعتين غير مفردتين بحيث أن $|\uparrow|$. ب $|=\wedge\wedge\rangle$ ، $|\uparrow|+|-\rangle$ ، وكان $|\uparrow|\geq|-\rangle$ فما قيمة $|\uparrow|$?

$$|1 \cdot \mathbf{v}| = |1 \cdot \mathbf{v}| = |1 \cdot \mathbf{v}|$$

$$|1 \cdot \mathbf{v}| = |1 \cdot \mathbf{v}| = |1 \cdot \mathbf{v}|$$

$$|1 + |\mathbf{v}| = |1 \cdot \mathbf{v}|$$

بالتعويض ف*ي* ١

فرع ۹: إذا علمت أن
$$f = \begin{bmatrix} 7 & 7 \\ 1 & 7 \end{bmatrix}$$
، فما قيمة $f' = f$?

$$\begin{bmatrix} 7 & 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 7$$

فرع ١٠: استخدم أحمد طريقة كريمر لحل نظام مكون من معادلتين خطيتين في المتغيرين س، ص فوجدأن: $|f|_{\omega} = |f|_{\omega} = -rac{1}{2}|f|_{\omega}$ ، فما قيم س، ص على الترتيب؟

$$|\mathbf{f}| = \mathbf{f}| = \mathbf{f}| = \mathbf{f}|$$

$$varphi = \frac{|v| + |v|}{|v|} = \frac{|v|}{|v|} = v$$

$$varphi = \frac{|v| + |v|}{|v|} = \frac{|v|}{|v|} = v$$

$$varphi = varphi =$$

|V-v| = |V-v| السؤال الثاني : إذا كان |V-v| = |V-v| = |V-v| ، فما قيم س، ص

$$(1) \cdot \cdot \cdot \cdot \boxed{V = \omega - \omega Y} \iff V = \omega \times 1 - 1 \times \omega \iff V = \begin{vmatrix} 1 & \omega \\ Y & \omega \end{vmatrix}$$

$$(1) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega - \omega} \iff V = \omega \times 1 - 1 \times \omega \iff V = \omega$$

$$(2) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega - \omega} \iff V = \omega \times 1 - 1 \times \omega \iff V = \omega$$

$$(3) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega - \omega} \implies V = \omega \times 1 - 1 \times \omega \iff V = \omega$$

$$(4) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega - \omega} \implies V = \omega \times 1 - 1 \times \omega \iff V = \omega$$

$$(5) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega - \omega} \implies V = \omega \times 1 - 1 \times \omega \iff V = \omega$$

$$(7) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega - \omega} \implies V = \omega \times 1 - 1 \times \omega \iff V = \omega$$

$$(7) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega + \omega} \implies V = \omega$$

$$(7) \cdot \cdot \cdot \cdot \boxed{V = \omega + \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \boxed{V = \omega + \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

$$(8) \cdot \cdot \cdot \cdot \boxed{V = \omega} \implies V = \omega$$

- ۲س + ۸ $\omega=3$ المعادلة (١) مع المعادلة -

$$0 = m \leftarrow 1$$
 بالتعويض في المعادلة (١): $7m - m = 7 \Rightarrow 7m = 0$

السوال الثالث: إذا كانت ${}^{\dagger}=\begin{bmatrix} -7 & 0 \\ 5 & 7 \end{bmatrix}$ فجد:

فرع أ : | ا ا ا ا ا ا ا ا ا

$$Y-=1$$
 $\cdot+1$ $Y-=0$ \times $Y-=$ $\begin{vmatrix} 0 & Y- \\ \xi & Y- \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ Y- \end{vmatrix}$ $\begin{vmatrix} 1 & 1 \\ Y- \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ Y- \end{vmatrix}$

$$| \mathbf{A} - \mathbf{A} - \mathbf{A} - \mathbf{A} | \mathbf{A} = \mathbf{A} - \mathbf{A} = \mathbf{A}$$

$$\begin{bmatrix} \frac{\circ -}{\xi} & 1 \\ \frac{\psi -}{\xi} & \frac{1}{\xi} \end{bmatrix} = \begin{bmatrix} \circ - & \xi \\ \psi - & \xi \end{bmatrix} \frac{1 - 1}{\zeta} \times \frac{1 - 1}{\zeta} = \frac{1 -$$

$$\mathbf{q}-=egin{bmatrix} + & - & + \ Y & w & 1 \ w & w & w \ 0 & 0 & \mathbf{\xi} \ \end{bmatrix}$$

$$9 - = \begin{vmatrix} w & w \\ w & \xi \end{vmatrix} + \begin{vmatrix} w & w \\ 0 & \xi \end{vmatrix} - \begin{vmatrix} w & \psi \\ 0 & 0 \end{vmatrix}$$

$$9-=(\texttt{T}\times \texttt{5}-\texttt{w}\times \texttt{w})\texttt{7}+(\texttt{w}\times \texttt{5}-\texttt{5}\times \texttt{w})-\texttt{w}(\texttt{w}\times \texttt{w}-\texttt{5}\times \texttt{m})$$

$$9-=(17-7)+(200-30)+(200-10)=-9$$

$$9-=75-7007+7005+7000-700-1000$$

مؤال الخامس: حل المعادلات المصفوفية:

$$\begin{bmatrix} \sqrt{\gamma} & 1 \\ \frac{1}{2} & \sqrt{\gamma} \end{bmatrix} = \begin{bmatrix} \sqrt{\gamma} & 1 \\ 0 & \sqrt{\gamma} \end{bmatrix}$$
 (باستخدام النظير الضربي)

$$\begin{bmatrix} \Upsilon & 1 \\ \xi & \Psi \end{bmatrix} = \emptyset$$

$$\begin{bmatrix} 7 & 1 \\ \xi & 7 \end{bmatrix} = 1$$

، س أي عدد حقيقي

$$|Y| = |Y| = |Y| + |Y|$$

$$\begin{bmatrix} 1 & 1 & 1 \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \mathbf{w} - \mathbf{z} & \mathbf{w} & \mathbf{w} - \mathbf{w} \\ \mathbf{w} - \mathbf{z} & \mathbf{w} - \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{w} - \mathbf{w} & \mathbf{w} - \mathbf{w} \\ \mathbf{w} - \mathbf{w} & \mathbf{w} - \mathbf{w} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{w} - \mathbf{z} & \mathbf{w} - \mathbf{w} \\ \mathbf{w} - \mathbf{z} & \mathbf{w} - \mathbf{z} \\ \mathbf{w} - \mathbf{z} & \mathbf{w} - \mathbf{z} \end{bmatrix}$$

$$700 - 300 = 3 \longrightarrow 7 \times 1 - 300 = 3$$

$$\frac{1-}{\xi} = \omega = -\xi - \xi$$

السؤال السادس: إذا كانت
$$l=\begin{bmatrix} w & w \\ \xi & o \end{bmatrix}= \begin{bmatrix} -b & \xi \\ \xi & o \end{bmatrix}$$
 ، فما قيم w ، w

$$f \times f^{-\prime} = \uparrow$$

$$\begin{bmatrix} \cdot & 1 \\ 1 & \cdot \end{bmatrix} = \begin{bmatrix} 0 & \xi \\ \xi & 0 - \end{bmatrix} \begin{bmatrix} \gamma & \omega \\ \xi & 0 \end{bmatrix}$$

$$\begin{bmatrix} \cdot & 1 \\ 1 & \cdot \end{bmatrix} = \begin{bmatrix} \xi \times \Upsilon + \omega \times \omega & \circ - \times \Upsilon + \xi \times \omega \\ \xi \times \xi + \omega \times \circ & \circ - \times \xi + \xi \times \circ \end{bmatrix}$$

ومن تساوي المدخلات المتناظرة
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 ومن تساوي المدخلات المتناظرة $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

أ. آلاء البرعي

أ. آلاء الجزار

أ. سليم السيقلي أ. بلال أبو غلوة

السؤال السابع : إذا كانت أ، ب مصفوفتين مربعتين غير صفريتين، بحيث أن أ. ب=و ، فأثبت أن: إحدى المصفوفتين أ، ب على الأقل ليس لها نظير ضربي.

الحل

$$\forall \times \nu = 0 \implies |\forall \times \nu| = |e| \implies |\forall \times |\nu| = 0$$

ما | | | = 0 لا يوجد نظير أو | - | = 0 لا يوجد نظير

اذن إحدى المصفوفتين أ، ب على الأقل ليس لها نظير ضربى.

السؤال الثامن : عند حل المعادلتين $\omega - \omega = 0$ ، ك $\omega + \omega = 0$ ، ن، ك عددان حقيقيان لا يساويان صفرا.

باستخدام طریقة کریمر، وُجد أن: $\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}$ جد قیمة؟

فرع أ: ن،ك

$$\begin{bmatrix} 0 & \nu \\ \nu & \omega \end{bmatrix} = |_{\omega}|_{1} \cdot \begin{bmatrix} 1 - \nu \\ 1 & \omega \end{bmatrix} = |_{1} \cdot \begin{bmatrix} 0 \\ \nu \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 - \nu \\ 1 & \omega \end{bmatrix}$$

وبمعلومية أن
$$\begin{vmatrix} 1 & 7 \\ 7 & 7 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

$$\begin{vmatrix} V_{1} & O \\ V_{2} & V_{3} \end{vmatrix} = \begin{vmatrix} V_{1} & O \\ V_{2} & V_{3} \end{vmatrix}$$
 ومن تساوي المدخلات المتناظرة

<u>فرعب:</u> س، ص

$$\Upsilon=\omega+\omega$$
 د د د د $-\omega=\omega-\omega$ الحل

$$\begin{bmatrix} 0 \\ w \end{bmatrix} = \begin{bmatrix} w \\ w \end{bmatrix} \begin{bmatrix} 1 - & 7 \\ 1 & 7 \end{bmatrix}^{\frac{1}{2}}$$

$$|\mathbf{r}| = |\mathbf{r} - \mathbf{r}| = |\mathbf{r} - \mathbf{r}| = |\mathbf{r}|$$

$$|A = \pi - - \circ = \begin{vmatrix} 1 & \circ \\ 1 & \pi \end{vmatrix} = |a|$$

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

$$1 = \frac{\Lambda}{\Lambda} = \frac{\left| \frac{1}{\omega} \right|}{\left| \frac{1}{2} \right|} = \omega \cdot 1 = \frac{\Lambda}{\Lambda} = \frac{\left| \frac{1}{\omega} \right|}{\left| \frac{1}{2} \right|} = \omega$$

السؤال التاسع : إذا كانت $f^{-1} = \begin{bmatrix} 7 & 1 \\ m & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (ماذا تلاحظ؟)

الحل

الإيجاد (٢ أ) -

$$(1^{7})^{-1} = (1.7)^{-1} = 1^{-1}. \quad 1^{-1} = 1^{-1} \cdot 1^{-1} = 1^{-1} = 1^{-1} \cdot 1^{-1} = 1^{-1} = 1^{-1} \cdot 1^{-1} = 1^{-1} = 1^{-1} =$$

$$\begin{bmatrix} 7 & 1 \\ 7 & 1 \end{bmatrix} \begin{bmatrix} 7 & 1 \\ 7 & 1 \end{bmatrix} = \begin{bmatrix} 7 + 7 & 7 + 1 \\ 9 + 7 & 7 + 1 \end{bmatrix} = \begin{bmatrix} 7 & 7 & 7 \\ 1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 7 &$$

السؤال العاشر: استخدم طريقة كريمر لحل النظام الآتي؟ m = -2 - 3 - 0 - 0 - 0 = -3

الحل

$$\Psi = -3$$
 ، $\psi + 0$ لترتیب $\psi = -3$ ، $\psi + 0$ لترتیب غیر جاهز

$$\begin{bmatrix} \xi - & \gamma \\ \gamma & 1 \end{bmatrix} = \begin{bmatrix} \gamma & \xi - \\ 0 & \gamma \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \gamma & \gamma \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \zeta - \\ \gamma & \gamma \end{bmatrix}$$

$$|\mathbf{f}_{\infty}| = |\mathbf{f}_{\infty}| = |\mathbf{f}_{\infty}| = |\mathbf{f}_{\infty}|$$

$$| \mathbf{r} = \mathbf{\epsilon} - \mathbf{q} = \begin{vmatrix} \mathbf{\epsilon} - \mathbf{r} \\ \mathbf{r} \end{vmatrix} = | \mathbf{r} |$$

أ. سليم السيقلي أ. بلال أبو غلوة أ. آلاء الجزار

أ. آلاء البرعي

$$\boxed{1} = \frac{1}{1} \frac{m}{m} = \frac{\left|\frac{1}{m}\right|}{\left|\frac{1}{m}\right|} = \infty \quad \text{o} \quad \boxed{T-} = \frac{TT-}{1} = \frac{\left|\frac{1}{m}\right|}{\left|\frac{1}{m}\right|} = \infty$$

لسؤال الحادي عشر: استخدم طريقة جاوس في حل النظام الآتى؟

$$9 = 23 + 23 = 9$$

$$7=8$$
 الترتيب غير جاهز ، الترتيب $\Rightarrow 7 + 7 + 7 = 7$

$$2 = 2 = -3 = -3$$

$$\begin{vmatrix} 9 & \xi & 1 - 1 \\ 17 - 7 - 0 & 0 \\ \frac{1-}{0} & \frac{1-}{0} & 0 \end{vmatrix}$$

$$\boxed{1=\mathcal{E}} \Leftarrow \frac{1-}{\circ} = \mathcal{E}\frac{1-}{\circ}$$

كل التوفيق والمحبة