بطاقة تقوية الفصل العاشر بنية النواة و الاشعاع النووي

*** القوانين والمعادلات الهامة:

القـــانون	الدلالة الفيريائية
$E = mc^2$	العلاقة بين المادة و الطاقة
$r = a_o A^{1/3} = 1.2 \times 10^{-15} A^{1/3}$	نصف قطر النواة
$\frac{4}{3}\pi r^3$	حجم النواة
$\frac{m_o A}{V_o A} = \frac{m_o}{V_o}$	كثافة النواة
$\Delta \boldsymbol{m} = (\boldsymbol{Z}\boldsymbol{m}_p + \boldsymbol{N}\boldsymbol{m}_n) - \boldsymbol{M}_p$	الفرق بين كتل مكونات النواة
$E_{bin} = \Delta m c^2$	طاقــة الـــربط النــووية
$E_n = \frac{E_{bin}}{A}$	طاقة الربط النووية لكل نيوكلون
$Q = (M_p - M_d - m_\alpha)c^2$	طاقــة الاضمــحلال Q
$K_{\alpha} = Q\left(\frac{M_d}{M_d + m_{\alpha}}\right)$	الطاقة الحركية لجسيم الفا
$K_d = Q\left(\frac{m_\alpha}{M_d + m_\alpha}\right) = Q - K_\alpha$	الطاقة الحركية لنواة البنت
$N = N_o \left(\frac{1}{2}\right)^n = N_o e^{-\lambda t}$	العلاقة بين الأنوية المتبقية و الأنوية الاصلية
$n=rac{t}{t_{1/2}}$	عدد مرات التحول n
$\lambda = \frac{Ln2}{t_{1/2}} = \frac{0.693}{t_{1/2}}$	ثابت الاضمــحلال λ
$ \begin{array}{c} \stackrel{A}{Z}X \rightarrow \stackrel{A-4}{Z-2}Y + {}^{4}_{2}He \\ \stackrel{A-4}{Z-2}Y \rightarrow \stackrel{A-4}{Z-2}Y + \gamma \end{array} $	معادلة انبعاث جسيم الفا
$ \begin{array}{c} \stackrel{A}{Z}X \to {}_{Z+1}^{A}Y + e^{-} + \widetilde{v}_{e} \\ \stackrel{A}{Z+1}Y \to {}_{Z+1}^{A}Y + \gamma \end{array} $	e- معادلة انبعاث جسيم بيتا
$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + e^{+} + v_{e}$	e ⁺ معادلة انبعاث جسيم بيتا

اعداد أ - عبدالله سعادة / ماجست برفي زماء

$X^* o X + \gamma$	معادلة انبعاث جسيم جاما
$^1_0n+^{235}_{92}U ightarrow^{236}_{92}U ightarrow X+Y+$ $^2_0n+energy$	معادلة الانشطار النووي

**** حالات خاصة:

 $rac{V_1}{V_2} = rac{A_1}{A_2}$ النسبة بين حجم أي نواتين مختلفتين هما $rac{A_2}{Z_2} Y$ ، $rac{A_1}{Z_1} X$ هما العالقة العالقة

 $rac{r_1}{r_2} = \sqrt[3]{rac{A_1}{A_2}}$ النسبة بين نصف قطرين أي نواتين مختلفتين هما $rac{A_2}{Z_1} Y$ ، $rac{A_1}{Z_1} X$ هما $rac{A_2}{Z_1} Y$ ، وانسبة بين نصف قطرين أي نواتين مختلفتين العمل هما $rac{A_2}{Z_1} Y$ ، وانسبة بين نصف قطرين أي نواتين مختلفتين العمل ال

1:1 تكون $\frac{A_2}{Z_2}$ ، $\frac{A_1}{Z_1}$ هما تكون $\frac{A_2}{Z_1}$ تكون $\frac{A_2}{Z_1}$ تكون $\frac{A_2}{Z_1}$.

 $^{0}_{-2}$ عناصىر ھامىة للحفىظ $^{0}_{-2}$ ھيليوم ، $^{0}_{-1}e$ الكتىرون ، $^{0}_{-1}e$ بويزتىرون ، $^{0}_{-1}H$ ھيليوم ، $^{0}_{-1}e$ ديتيريوم ، $^{0}_{-1}H$ تريتيوم ، $^{1}_{-1}H$ بروتون. ، $^{0}_{-1}H$ هيدروجين ، $^{0}_{-1}H$ ديتيريوم ، $^{0}_{-1}H$ تريتيوم ، $^{0}_{-1}H$ بروتون.

ه- يمكن حساب عدد جسيمات الف المنبعثة لأي اضمحلال من حفظ العدد الكتلي حيث $lpha=rac{A_1-A_2}{4}$ عدد

عدد $oldsymbol{eta}=Z_2-Z_1+2 imes$ عدد $oldsymbol{lpha}$ عدد $oldsymbol{eta}$ عدد الذري حيث عدد جسيمات بيتا المنبعثة من حفظ العدد الذري حيث

٧- تعتمد معادلات الاضمحلال الاشعاعي على حفظ العدد الذري و الكتلي كما تعتمد على حفظ الزخم الخطي ان كانت نواة الام الاصلية ساكنة وكذلك حفظ الطاقة.

٨- النسبة بين عدد الانوية المتبقية لعينة عنصر A الى عينة أخرى لعنصر B عندما تحتوي كل منهما على عدد نفس العدد من الذرات وبعد مرور نفس الحرمن على العينتين هو $\frac{N_A}{N_B} = \left(\frac{1}{2}\right)^{n_A-n_B}$.

 $1.66 \times 10^{-27} = 1.993 \times 10^{-23} imes rac{1}{12} \ u$ فان u فان u فان u فان u الكتل الذرية u الكتل الذرية u الكتل الذرية u عند الكتل الذرية u الكتل الذرية u عند الكتل الك

. $2.3 imes 10^{17} \ kg/m^3$ و تساوي تابته لا تتغير و تساوي الانوية ثابته الم

۱۲-عند اضمحلال البروتون الى نيوترون ينتج بويزترون و عند اضمحلال النيوترون الى بروتون ينتج الكترون $^4_{ZX} \to ^{A-4}_{Z-2}Y + ^4_2He$ فان العدد الكتلي يقل بمقدار 4 لكن عدد البروتونات يقل بمقدار 2 وكذلك عدد النيوترونات يقل بمقدار 2 .

۱۰- في معادلة اضمحلال الذي يعطي جسيم بيتا السالب $e^0_{ZX} \to e^{A}_{Z+1}$ فان العدد الكتلي يبقى ثابت لكن عدد البروتونات يزداد بمقدار 1 أما عدد النيوترونات يقل بمقدار 1.

۱- في معادلة اضمحلال الذي يعطي جسيم بيتا الموجب $^0_{zX} + ^0_{z-1}Y + ^0_{z}$ فان العدد الكتلي يبقى ثابت لكن عدد البروتونات يقل بمقدار 1 أما عدد النيوترونات يزداد بمقدار 1.

١٦- كتلة نواة أي عنصر تكون اقل من مجموع كتل مكوناتها من النيوكلونات الحرة.

١٧- اكتسر الانوية استقرار تلك التي تمتلك اكبسر طاقة ربط نووية والعكسس صحيح.

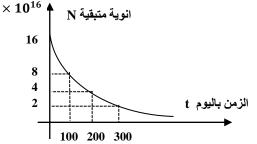
1 ٨- نصف قطر النواة يعتمد على الجذر التكعيبي للعدد الكتلي لكن حجم النواة يعتمد على العدد الكتلي بينما أن كثافة أي نواة ثابت لا يعتمد على أي شيء.

٩ - البروتون و النيوترون متقاربان في الكتلة لكن الالكترون و البويزترون متماثلان في الكتلة. ٢ - جميع النظائر تتشابه في العدد الذري لذلك لها نفس الخواص الكيميائية و تختلف في الكتلي الخواص الفيزيائية

۲

**** الأسئلة الحسابية:

- ١- نواة كروية نصف قطرها 3.6 فيرمى فما مقدار عددها الكتلى؟
- $^\circ$ 1. $^\circ$ 1. احسب كثافة نواة الحديد $^\circ$ 1 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون $^\circ$ 8 اذا علمت ان كتلة كل من البروتون و النيوترون و النيوترون المناطقة المنا
- 9.012182 هـ احسب طاقة الربط النووية لكل نيوكلون في نواة البريليوم 9_4Be بوحدة Mev اذا علمت ان كتلة نواته 9_4Be وكتلة البروتون 9_4Be وكتلة البروتون 9_4Be وكتلة البروتون 9_4Be وكتلة النيوترون 9_4Be المحتالة البروتون 9_4Be المحتالة النيوترون 9_4Be المحتالة البروتون 9_4Be المحتالة النيوترون 9_4Be المحتالة النيوترون 9_4Be
- $3.6 \times 10^{-13}~cm$ المسب طاقة $3.6 \times 10^{-13}~cm$ المسب طاقة 1.007276~u وعدد بروتون 1.008665~u وكتلة النيوترون 1.008665~u وكتلة النيوترون 1.008665~u
- ٥- احسب النسبة بين نصف قطر نواة الهيليوم 4_2He ونواة الرادون $^2_{86}Ra$ و كذلك النسبة بين حجميهما؟
- $0.0005486~\mathrm{u}$ اذا علمت أن كتلة ذرة البوريوم $^{262}_{107}Bh$ هي $^{262.1321}_{107}Bh$ اذا كانت كتلة الالكترون $^{262}_{1007276}Bh$ احسب ما يلى:
 - أ- كتلة نواة البوريوم ب- طاقة الربط النووية لكل نيوكلون بوحدة Mev
 - ۷- احسب حجم نواة اليورانيوم U^{238}_{92} ؟
 - ٨- مستعينا بالجدول الاتي احسب ما يلي:
 - أ- حجـم نـواة Li
 - ب- طاقعة الريط النووية لنواة الريط

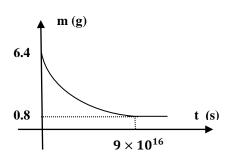

- ٩- سلسلة اشعاعية تبدأ بعنصر البلوتونيوم $P_{\rm u}$ وتنتهي بالرصاص $^{209}_{82}Pb$ حيث انبعث 8 جسيمات الفا و 4 جسيمات بيتا احسب العدد الكتلى و العدد الذري لنسواة البلوتونيسوم؟
 - ١٠-عينة من عنصر الرادون المشع فترة عمر النصف لها 3.8 يوم احسب ما يلي:
 - أ- ثابت الاضمحلال لهذا العنصر ب- الزمن اللازم حتي يضمحل 60% من العينة الاصلية.
- ١١-عينة من عنصر مشع كتلتها g 48 و زمن عمر النصف لها هو 140 يوم احسب ما يلي:
 - أ- السزمن اللازم حستى ينسحل من العيسنة g 45 g.
 - ب- الزمن اللازم حتى يتبقى %6.25 من العينة.
 - جـ الزمن اللازم حتى ينحل 7/8 من العينة الاصلية.
 - د- الزمن اللازم حـتى يتبقى ربع العينة الاصلية.
 - هـ كمية المادة المتبقية دون تحلل بعد مرور زمن 560 يوم
- ١٠- تنحل نواة الشوريوم $rac{232}{92}$ الى نواة الرصاص $rac{208}{82}$ احسب عدد جسيمات الفا و جسيمات بيتا المنبعثة عن الاضمحلال لهـذا التـفاعل؟
- ١٣- استخدمت عينة تحتوي على عنصر مشع في تحديد عمر صخرة وجد بان نسبة ما تبقى من العنصر الى الاصل 1:16 احسب عمر الصخرة اذا كان زمن عمر النصف لهذا العنصر 1600 سنة؟

٣

٤ ١-الشكل الاتي يوضح علاقة بيانية بين الأنوية المتبقية مع الزمن لعنصر مشع احسب ما يلي: أ- زمن عمر النصف

ب- ثابت الاضمحلال

جـ الأنوية المتبقية بعد مرور 400 يوم



١- اذا علمت ان فترة عمر النصف لعنصر مشع 6 سنوات و بعد مرور 30 سنة تبقى منها g 1.5 فما مقدار الكتلة الاصلية للعنصر قبل اضمحلالة؟

X 1- نواة يورانيوم ${238 \atop 92}^{28}$ اطلقت جسيم الفا وتحولت الى نواة ثوريوم Th ثم تحولت هذة النواة الى نواة مجهولة X و اعطت جسيم بيتا السالب

أ- اكتب المعادلات السابقة

ب- ما هــو اسم العنصر Y

٧ - الشكل الاتي يوضح منحنى اضمحلال عنصر مشع مع الزمن و كتلة الانوية المتبقية لهذا العنصر معتمدا علية احسب ما يلي: أ- زمن عمر انصف لهذا العنصر بابت اضمحلال هذا العنصر

۱۸ - عينة من عنصر مشع بعد مرور 72 دقيقة كان المتبقي منها $2 \ gm$ وبعد مرور 180 دقيقة كان المتبقي منها $2 \ gm$

أ- زمن عمر النصف للعنصر المشع.

ب- كتلة المادة الاصلية.

ا المعنى بالك على المعنى الما المعنى الما المعنى الما المعنى الما يمتى الما يمتى الله المعنى ما يلى: Ra المعنى الما يلى: Mev (5.14 ، 5.421)

أ- اكتب المعادلات الكيميائية السابقة وارسم مخطط توضيحي لها.

ب- فسر ما سبب اختلاف الطاقة الحركية لجسيم ألفا المنبعث.

٢٠ - أكمـل المعـادلات الاتيـة

$${}^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{236}_{92}U \rightarrow {}^{140}_{54}Xe + {}^{93}_{38}Sr + \cdots$$

$${}^{1}_{0}n \rightarrow {}^{1}_{1}P + \cdots + \cdots$$

$${}^{238}_{92}U \rightarrow {}^{234}_{90}Th + \cdots$$

$${}^{4}_{2}He + {}^{14}_{7}N \rightarrow {}^{17}_{8}O + \cdots$$

$${}^{2}_{1}H + {}^{3}_{1}H \rightarrow {}^{4}_{2}He + \cdots + \cdots$$

$${}^{12}_{5}B \rightarrow {}^{12}_{6}C + \cdots + \cdots$$

$${}^{1}_{1}P \rightarrow {}^{1}_{0}n + \cdots + \cdots$$

$${}^{1}_{1}H + {}^{1}_{1}H \rightarrow {}^{3}_{2}He + \cdots$$

$${}^{12}_{6}C \rightarrow {}^{12}_{6}C + \cdots$$

$${}^{2}_{1}H + {}^{2}_{1}H \rightarrow {}^{3}_{1}H + \cdots + \cdots$$

اعداد أ - عبدالله سعادة / ماجست سرفي زما

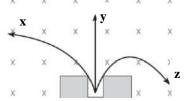
جوال 0599696739

ا ٢- اعتبر ان قطر نواة العنصر ${}^{4}_{X}$ تساوي ${}^{4.59}$ فيرمى وكتلتها ${}^{7.023}$ احسب مقدار الطاقة اللازمة لنزع نيوكلون واحد من النواة بوحدة Mev ؟

الكتلة u	النواة
26.9815	AL
4.0026	Не
29.9783	P
1.0087	n

 15 - 16 بالاعتماد عليها بنظير الفسفور 10 بالاعتماد عليها اجب عن ما يلى: $^{27}_{13}AL + \cdots \rightarrow ^{30}_{15}P + ^{1}_{0}n$

أ- أحسب كثافة نواة الالمونيوم 27AL ب- اكمــل المعــادلة الســابقة د_ طاقة الربط النووي للعنصر AL جـ النسبة بين حجـم نواة AL : P


٢٣ - تمثل السلسلة الاتية جزء من التحلل الاشعاعي لعنصر اليورانيوم ^{235}U كما يلي $^{235}_{92}U \rightarrow ^{231}_{90}Th \rightarrow ^{231}_{91}Pa \rightarrow ^{227}_{89}Ac \dots \rightarrow ^{207}_{82}Pb$

أ- ما اسم كل من الجسيمات المنبعثة في المرحلتين 1 ثم 2 ب- ما عدد جسيمات كل من الفا و بيتا في التحلل رقم 3

٤٢- أثبت أن كثافة جميع الأنوية متساوية ؟

٥٠- تحركت ثلاث جسيمات z ، v ، x في مجال مغناطيسي منتظم نحو الداخل و انحرفت كما بالشكل معتمد علية: أ- حدد نوع كل من شحنة هذه الجسيمات

ب- ما اسم الجسيم النووي الذي يدل على كل منها

 $^{16}_{80}$ أثبت بان نواة الفضة $^{107}_{47}$ أكثر استقرار من نواة الاكسجين $^{107}_{47}$ حيث كتلة نواة الفضة u 106.9387 وكتلة نواة الاكسجين u 16.0039°

A 238 Th 234

 ${f Z}$ -يمثل الشكل الاتى علاقة بين العدد الذري ${f Z}$ و الكتلي ${f A}$ لجزء من سلسلة اليورانيوم اذا علمت ان كتلـــة نواة كل من $^{238}_{92}U$ هي $^{238.0508}$ و نواة الاتي: عن الاتي: $^{234.0436}_{90}$ هي $^{234.0436}_{90}$ و كتلة نواة الفا $^{234}_{90}$ أ-أكتب المعادلات التي تمثل الاضمحلال في كل من المرحلتين؟ ب- احسب الطاقة الحركية لجسيم الفا في الاضمحلال الأول؟ ج-ماذا تمثل نواة العنصر X ؟

 $^{206}_{22}Pb$ د-اذا استقر العنصر $_{
m X}$ بعد سلسلة من الاضمحلالات الى الرصاص احسب عدد جسيمات الفا و بيتا الناتجة؟

٢٠- من تفاعل اضمحلال اليورانيوم في المعادلة الاتية $U
ightarrow ^{234}_{90} U
ightarrow ^{234}_{90} Th + ^4_2 He$ احسب ما يلي: أ- طاقة الإضمحلال Q بوحدة Mev .

 ^{234}Th ب- الطاقة الحركية لجسيم الفا و نواة

جـ هل التفاعل طارد ام ماص للحرارة حيث كتلة نواة هي $234.0436~\mathrm{u}$ و نواة ماص للحرارة حيث كتلة نواة هي $234.0436~\mathrm{u}$ كتلة نواة الفا 4.0015 u

اعداد أ - عبدالله سعادة / م*احست*

اجب عن الاسطلة الاتية: $X + {235 \over 92}U
ightarrow {141 \over 55}Cs + {93 \over 37}Rb + 2{1 \over 0}n$ اجب عن الاسطلة الاتية:

أ- ما اسم العنصر X موضحا قيمة كل من A و B?

ب- ما النسبة بين حجم نواة Cs الى حجم نواة Rb ؟

ج- احسب كشافة نواة العنصر Rb ؟

• ٣-اذا علمت ان فترة عمر النصف لعنصر ما 6 سنوات وبعد مضي 30 سنة تبقى من العينة g 1.5 احسب ما يلي: أ- كتلة العينة الاصلية قبل الاضمحلال بالمضمحلة خلال تلك الفترة الزمنية

٣١ - تضمحل نواة البرون $\frac{12}{5}$ حيث يقذف جسيم بيتا السالب طاقته الحركية (Mev ،13.4 Mev) ويتحول الى نواة كربون C بطريقتين أجب عن ما يلبى:

أ- اشرح الطريقتين بالمعادلات موضحا رسم تخطيطي لذلك.

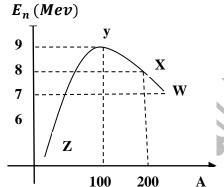
ب- فسر سبب اختلاف طاقة جسيم بيتا الناتج.

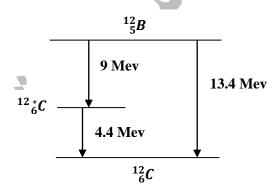
 $m_p=1.0072~u$ ينحل البروتون المسكن للنيوترون ان ينحل خارج النواة وينتج بروتون تلقائيا لكن ليس من الممكن ان $m_p=1.0072~u$ ينحل البروتون الحسر خارج النواة تلقائيا موضحا ذلك بالمعادلات حيث ان كتلة البروتون $m_p=1.0086~u$ و الالكتسرون $m_p=1.0086~u$ و الالكتسرون و الالكتسرون $m_p=1.0086~u$

٣٣- نواة مجهولة تمتص نيوترون ثم ينبعث جسيم بيتا السالب ثم تنشطر النواة الناتجة الى جسمين من جسيمات الفا احسب مقدار العدد الذري Z و العدد الكتلي A لهذه النواة موضحا ذلك بكتابة المعادلات؟

ع حوضح هل هذا التفاعل من الممكن ان يحدث تلقائيا $v_e + v_e + v_e$ اذا علمت مقدار كتلة $m_e = 0.00055~u$ اذا علمت مقدار كتلة $m_e = 0.00055~u$ وكتلة $m_e = 0.00055~u$ وكتلة $m_e = 0.00055~u$

٦


 $^{\circ}$ هي الشكل الاتي رسمت علاقة بين طاقة ربط كل نيوكلون بوحدة Mev مع العدد الكتلي لمجموعة من العناصر هي X-Y-Z-W بالاعتماد على المنحنى البياني اجب عن الاسئلة الاتية:


أ- أي العناصر أكثر استقرار و اكثر انشطار و اندماج ولماذا؟

Y احسب طاقة الربط النووية للعنصر

ج- احسب حجم نواة العنصر X ؟

 ^{12}B يفقد جسيم بيتا السالب وتتحول الى نواة كربون ^{12}B بطريقتين اشرح الطريقتين مع كتابة معادلات التفاعل معتمدا على الشكل البياني الاتى

مع تمنياتي بالتوفيق و النجاح اعداد / أ- عبدالله سعادة تمت بتاريخ ٢٠١٨/١٢/٢م

اعداد أ - عبدالله سعادة / ماجست برفي زيا